LAKE DEVELOPMENT AUTHORITY

REQUEST FOR PROPOSALS FOR PROFESSIONAL DESIGN SERVICES

for the

Coastal Design Services for the Mentor Harbor Entrance Channel Improvements

for the

Lake Development Authority 105 Main Street, Suite B501 Painesville, Ohio 44077

ISSUED: January 30th, 2023

PROPOSALS SUBMITTAL DUE: March 3rd, 2023, 2:00 P.M. (EST)

LAKE DEVELOPMENT AUTHORITY LEGAL NOTICE

REQUEST FOR PROPOSALS

Request for Proposals for Professional Design Services in Accordance with ORC 153.67.

Request for Proposals may be obtained by visiting Lake Development Authority website at LDAuthority.org. Statement of Proposal must be received on or before 2:00 p.m. (EST), Friday, March 3rd, 2023, at which time Proposals will be publicly recorded.

Coastal Design Services for the Mentor Harbor Entrance Channel Improvements

Firms must comply with all applicable federal and state laws and regulations pertaining to Equal Employment Opportunities.

The Lake Development Authority is a governmental agency exempt from all local, state and federal taxes. Firms shall be responsible for the collection of and payment of all sales and other taxes that may be applicable.

Any person who submits, or attempts to submit Proposals is solely responsible for the method of submission and assumes the risk that the qualifications may be delayed or not received by the Lake Development Authority, whether by reason of equipment malfunction, human error or any other cause whatsoever. LATE PROPOSALS WILL NOT BE CONSIDERED.

The Lake Development Authority reserves the right, in its sole discretion, to negotiate or to reject any and all Proposals, parts of any and all Proposals and waive all technicalities.

BY THE ORDER OF THE LAKE DEVELOPMENT AUTHORITY.

Mr. David E. Anderson, Executive Director Lake Development Authority January 30th, 2023

Lake Development Authority

Coastal Design Services for the Mentor Harbor Entrance Channel Improvements

Responses Due: March 3rd, 2023, 2:00 pm

The Lake Development Authority invites qualified professional consulting design firms to submit Proposals to undertake the design and engineering for the construction of improvements to the Mentor Harbor Entrance Channel in Mentor, Ohio. Proposal packages are due no later than 2:00 pm on Friday, March 3rd, 2023.

Communication Restrictions

Please note the following policy concerning communication between Consultants and the Lake Development Authority during the announcement and selection process. During the time between advertisement and the announcement of the final consultant selection, communication with consultants (or their agents) shall be limited as follows:

Communications which are strictly prohibited:

Any discussions or marketing activities related to this specific project.

Allowable communications include:

Technical or scope of services questions specific to the project or RFP requirements, but not in person. Written questions must be submitted via email to Myranda Keister, Director of Planning and Development at MKeister@LDAuthority.org by Wednesday, February 22nd, 2023. The Lake Development Authority will not be responsible for any oral instructions or information. Answers to all questions will be emailed to all parties that have expressed an interest in submitting a Proposal for this project.

This Request for Proposals consists of:

TABLE OF CONTENTS


A.	Project Description	4
	Scope of Services	
	Tentative Selection Schedule	
D.	Submittal Requirements	6
	Example Scoresheet	
	 1	

EXHIBIT A – USACE Geotechnical Information and Lake Bottom Survey

EXHIBIT B - USACE Mentor Harbor Study

A. Project Description

The Lake Development Authority intends to construct improvements to the existing structures supporting the entrance channel to Mentor Harbor. The photograph below is an aerial photo of the existing Mentor Harbor Channel.

The Mentor Harbor Channel was constructed approximately 90 years ago (circa 1920s). The Mentor Harbor Channel is approximately 600 feet in length and is created by two parallel, East and West, Steel Sheet Piling Channel Wall Structures. When one designs and builds marine structures like the Mentor Harbor Channel walls, engineers expect the structures to have a useful life of 40 to 50 years. In 1986 there was a major sudden failure at the North end of the West Channel Wall which was promptly repaired and a preemptive repair was also performed on the North end of the East wall. During the 1980's steel sheet piling baffle walls were constructed along the East and West channel walls at strategic locations so as to reduce the wave reflection within the channel and surge within the channel and harbor. Over the ensuing years, Lake Erie storms and winter ice have destroyed these baffle walls. Over the past 90 years, the top circumferential structural tension rings that hold the tops of the individual Steel Sheet piling cells together have rusted away and are no longer

functional, thus, reducing the structural stability of the Channel Wall structure. Also, over the past 90 years, the steel sheet piling interlocks have rusted to a point where a sudden and catastrophic failure could occur at any time and at any location within the Channel Wall System thus resulting in a potential "unzipping" of a large section of the Channel Walls. On September 22, 2022, a failure occurred that demonstrates the fragile condition of the Mentor Harbor Channel Walls. The failure started as a 5 foot long wall section failure which "unzipped" itself to an immediate 10 foot long wall replacement.

The Mentor Harbor Channel Walls are 90 years old and have served their function well beyond their life expectancy. The Mentor Harbor Channel Walls need to be restructured immediately because they are extremely fragile due to the steel's advanced age and their vulnerability to a complete and catastrophic failure at any time. It is expected that the selected designer will examine and consider potential alternatives and present options to the Lake Development Authority stating the Pros and Cons of each potential design solution. The relative cost of each potential option will be a key factor in the decision making process.

B. Scope of Services

The scope of services includes engineering assessment, preliminary design, permitting, design development, final design, and construction administration. The Tasks below are divided into two Phases. It is anticipated that Phase I will be undertaken immediately. Phase II will be undertaken as funding is made available for the Project.

PHASE I

Task 1. Site Conditions Analysis

Includes survey, geotechnical investigations, site inspections, historical data review, metocean analysis, preliminary modeling. The USACE has performed a Geotechnical Investigation of the Mentor Harbor Channel area and has performed an in-water bottom survey of the area. These two elements will be provided as Exhibit B.

Task 2. Preliminary Design

Includes alternatives, antidegradation analysis, initial regulatory coordination, preliminary design, modeling to verify preferred alternative, preliminary construction cost estimates for the alternative designs considered.

PHASE II

Task 3. Regulatory Permitting

Authorizations are anticipated to be required from the U.S. Army Corps of Engineers, Ohio Department of Natural Resources, and Ohio Environmental Protection Agency. The consultant will prepare permit applications for submittal to each agency and coordinate with the agencies throughout the review process. The consultant will respond to comments from the regulatory agencies and revise the design as needed to address agency comments.

Task 4. Design Development

The consultant will refine the design and develop engineered plans, specifications, opinions of probable construction costs, and other documents required for bidding and construction of the improvements to the waterfront infrastructure. Deliverables will be required at 60%, 90% and final design.

Task 5. Bidding Phase Services

The consultant will assist in the public advertising of the construction bid process in accordance with

the Ohio State requirements. The consultant will hold a pre-bid meeting for the interested construction contractors where the contractors may ask questions. The consultant will be responsible for receiving construction contractor questions during the bid period and issuing answers to those questions and clarifications via addendums to the potential construction bidders. Following the receipt of the bids, the consultant will make a recommendation to the Lake Development Authority as to which bid is the best bid.

Task 6. Construction Phase Services

The consultant will be responsible to draft the construction contract using an industry standard form, in accordance with the applicable governmental requirements. The consultant will attend monthly construction project progress meeting and maintain minutes and an agenda for each meeting. The consultant will promptly answer any and all contractor questions and address any unanticipated condition that may arise during construction. The consultant will receive, review, and once approved, the construction contractor's monthly invoices and forward said invoices to the Lake Development Authority for payment. The consultant will provide regular inspection of the work and weekly progress reports.

Upon completion of the work the consultant will issue a Certificate of Final Completion.

Final deliverables and detailed consultant schedules will be discussed during the Scope of Services negotiations with the selected firm. The selected firm will be required to develop and adhere to a design schedule. Within your submission, you are to include your likely design schedule for Phase I. The Design Contract will be structured so as to release the Designer to perform each Task upon written authorization. The Tasks within Phase II will occur as funding is made available for the design and construction of the Project.

C. Tentative Selection Schedule

Proposals packets due to the Lake Development Authority
Notification of Shortlist Firms
Interview up to four (4) firms
Notify all firms of selection
Deadline to finalize Scope of Services and contracts
Contract approval/Notice to Proceed

D. Submittal Requirements

Please provide the information requested below, in the same order listed below, in a letter signed by an officer of the firm. Do not send additional forms, brochures, or other material. Statements of Proposal are limited to twenty-five (25) single sided 8.5-inch by 11-inch pages. Please use a minimum font size of 12-point and maintain margins of 1-inch on all four sides. Bind submittals by stapling at the upper left hand corner only. Do not use any other binding system. Do not provide tabbed inserts or other features that may interfere with machine copying.

Please include with the Proposal packet:

- A. Cover letter (1 page maximum).
- B. Identify prime consultant and any subconsultants included on the project team (2 pages maximum).
- C. Provide brief bios of key project team members. The bios should clearly state each team member's proposed roll on the project, experience, and location relative to the project site (5 pages maximum).
- D. Experience of firm and personnel assigned to this project that will uniquely qualify your firm to

- complete this work, including descriptions of up to 10 projects demonstrating the staff's experience delivering similar projects (10 pages maximum).
- E. Description of the firm's overall understanding of the project and recommended scope of services to accomplish the stated goals (2 pages maximum).
- F. A project management schedule showing all milestones and expected completion dates (1 page maximum)
- G. Project staffing plan and organizational chart (1 page maximum)
- H. References (1 page maximum)
- I. Resumes for the project manager and key technical staff (remaining pages).

The Lake Development Authority will form a Selection Committee comprised of staff and other stakeholders. The Selection Committee will evaluate and select the most qualified consultant(s). Competitive price selection will not be utilized under the selection process.

The following criteria will be used in the consultant selection process:

- Strength of project manager and strength/experience of key team members and proposed subcontracted firms' key personnel;
- Past performance and experience with projects of similar scope and size;
- Project understanding and approach, which includes all listed items in the Scope of Work;

Suggested areas of expertise for this project include but are not limited to:

- Experience performing hydrographic surveys and topographic surveys for waterfront projects.
- Experience designing projects in accordance with the Ohio Coastal Design Manual prepared by Ohio Department of Natural Resources Office of Coastal Management.
- Demonstrated experience successfully permitting waterfront and in-water projects in Ohio, including Section 401/Section 10 Permits from the U.S. Army Corps of Engineers, Section 401 Water Quality Certifications from the Ohio Environmental Protection Agency, and Coastal Zone Management Federal Consistency Certifications from the Ohio Department of Natural Resources.
- Cost estimating for in-water construction projects, knowledge of Lake Erie/Great Lakes marine construction markets preferred.
- Experience preparing construction drawings and specifications for shoreline protection and channel improvement projects.
- Successful oversight of in-water construction projects.

Based on the Proposals submitted, the Selection Committee may conduct interviews of firms that best demonstrate an understanding of the Lake Development Authority's objectives and adequately address all elements of the RFP. Whether interviews are performed or not, the Lake Development Authority shall enter into contract negotiations with the preferred firm to determine the final scope of services and project budget. If negotiations fail, the Lake Development Authority shall enter into negotiations with the second highest ranked firm. This process shall continue until a contract is successfully negotiated or the Lake Development Authority determines to issue a second RFP or delays the project or abandons the project. The contract must be approved by the Lake Development Authority Board of Directors.

All Proposals shall be considered without regard to race, color, religion, sex, national origin, citizenship, age, mental or physical disabilities, veteran/reserve/national guard or any other similarly protected status.

One original Proposals packet and one electronic copy via email in PDF or MSWord format shall be submitted by Friday, March 3rd, 2023 at 2:00 pm to:

Mr. David E. Anderson, Executive Director Lake Development Authority 105 Main Street, Suite B501 Painesville, Ohio 44077

In care of Myranda Keister at, MKeister@LDAuthority.org.

Responses received after 2:00 pm local time on the response due date will not be considered unless an acceptable occurrence has occurred and the selection committee grants a specific waiver. The Lake Development Authority is not responsible for any costs incurred by Consultants in the preparation of a Statement of Proposals or prior to contract execution.

E. Example Scoresheet

Selection Criteria		Available Points	Points Awarded		
Strength of project manager and strength/experience of key team members (40 points)					
Project Management Lead	Experience/ability of project manager to manage scope/budget/schedule/quality	10			
Project Design Lead	Experience of project designer to achieve owner's vision and project requirements	10			
Key Discipline Leads	Experience/ability of key consultants to perform effectively and collaboratively	10			
Technical Staff	Experience/ability of technical staff to create fully coordinated construction documents	10			
Construction Administration Staff	Experience/ability of field representative to identify and solve issues during construction	10			
Past performance and experience w	th projects of similar scope and size (30 points)				
Previous Team Collaboration	Experience and sample projects	10			
Waterfront Project Experience	Experience and sample projects	10			
Permitting Experience Section 404/10, Section 401	Experience and sample projects	5			
Team Organization	Clarity of responsibility / communication demonstrated by table of organization	5			
Project understanding and approach (30 points)					
Project understanding	Consultant's understanding of the project, site conditions, and design requirements	15			
Project approach	Consultant's understanding of the scope and ability to perform in a timely manner	15			
Total Score		100			

F. Contract Type and Method of Payment

It is expected that an industry standard contract form will be used and then modified in accordance with the terms, conditions and payments for each Task agreed upon during the negotiation period for the services to be provided by the selected Design Firm.

G. Compliance with Title VI of the Civil Rights Act of 1964

In accordance with the Title VI of the Civil Rights Act of 1964 (78 Stat. 252, 42 U.S.C. SS 2000d to 2000d-4) and the regulations, hereby notifies all Proposers that it will affirmatively ensure that any contract entered into pursuant to this advertisement, all Proposers including disadvantaged business enterprises will be afforded full and fair opportunity to submit proposals in response to this invitation and will not be discriminated against on the grounds of race, color, national origin, sex, age, disability, low income status, or limited English proficiency in consideration for an award.

H. Suspended or Debarred Firms

Firms included on the current Federal list of firms suspended or debarred are not eligible for selection.

I. Exhibits

EXHIBIT A

USACE Geotechnical Information and Bottom Survey Information

EXHIBIT B

USACE Mentor Harbor Study

https://www.dropbox.com/sh/xr393lylytfnsyf/

AACqJhPOYQxh6VmCgLWn5yBJa?dl=0

Exhibit A Appendix B

GEOTECHNICAL EVALUATION MAY 27, 2021

Mentor Harbor Section 107 B1 GEOTECHNICAL APPENDIX

Table of Contents

Contents

Tal	ole of Contents	2
1.	Site Geology	3
2.	Subsurface Investigations	3
	Subsurface Conditions	
	Geotechnical Analyses and Design	
	4.1 Undrained Shear Strengths for Very Soft Silty Clay Stratum	
	4.2 Stability Analyses	
	4.3 Settlement Analysis	
	4.4 Filter Requirements	
	4.5 Stability Berms	
	4.6 Sheet Pile Walls	
	References	

1. Site Geology

A surficial geology map of the area is included as Figure 1. Relative to other areas along the south shore of Lake Erie, the past environments and processes contributing to overburden deposition seem to be quite variable. In addition to the typical bedrock/glacial till/glaciolacustrine stratigraphy, alluvium and organic soils are present.

Approximately 25,000 years ago, an ice sheet associated with the Wisconsin glaciation covered the Erie basin. The ice sheet advanced in a northeast to southwest direction across the area, depositing till at the bedrock/ice interface. Near the end of the Wisconsin glaciation, the ice sheet made a series of retreats and advances as a lobe across the Erie basin. During retreats, drainage at the northeast end of the basin remained blocked by ice, and glacial lakes formed behind the retreating ice (Dreimanis, 1958). During these periods, fine-grained silts and clays were deposited at the bottom of the glacial lakes. Approximately 12,500 years ago, the ice sheet retreated far enough to the north to open a drainage path to the east for water trapped behind the ice in the Erie and Ontario basins (Coakley and Lewis 1985). This resulted in drainage of the Erie basin via the Niagara River. Post-glacial Lake Erie water levels in the Central Basin, as estimated by Holcombe et. al. (2003) and presented in Figure 2, were initially significantly lower than current levels. Therefore, the previously deposited glaciolacustrine sediments tend to be overconsolidated due to erosion, loss of buoyancy, and desiccation. Based on the presence of alluvium and organic deposits in the area, it is likely that the mouth of a post-glacial river became submerged as the water level in Lake Erie rose.

2. Subsurface Investigations

Approximate locations for the borings discussed below are illustrated on Figure 3. Boring logs and the results of grain-size analyses for the lakebed sand at B20-01 and B20-04 are included in Attachment 1. The Mentor Harbor Yachting Club provided logs for borings B00-01 through B00-05, which were placed in 2000 to facilitate design of site improvements. In the mid-1980's, USACE evaluated proposed breakwater construction offshore of Mentor Beach Park as part of a Section 103 project (USACE, 1986). Borings D85-01, DUV85-02, and DUV85-03 were placed to investigate subsurface conditions along the proposed breakwater alignment. Six standard test borings, B20-01 through B20-06, were placed in September 2020 to facilitate the geotechnical evaluation for this project.

3. Subsurface Conditions

Fine sand was encountered on the lakebed at all 2020 boring locations. At borings B20-01 through B20-05, the thickness of this stratum ranges from approximately 2 to 8 feet. At B-06, the thickness of the sand stratum encountered was approximately 20 feet. A very soft silty clay stratum was encountered beneath the sand. This stratum includes varying amounts of silt and fine sand. This very soft stratum is underlain by relatively strong/incompressible sand and/or glacial till. Elevations of the major stratigraphic changes are presented in Table 1.

BORING	LAKEBED (FEET LWD)	TOP OF VERY SOFT SILTY CLAY/CLAYEY SILT STRATUM (FEET	BOTTOM OF VERY SOFT SILTY CLAY/CLAYEY SILT STRATUM
		LWD)	(FEET LWD)
B20-01	-11.8	-16.3	-33.8
B20-02	-11.3	-13.3	-36.1
B20-03	-10.8	-24.3	-38.8
B20-04	-6.8	-14.8	-35.8
B20-05	-6.8	-11.8	-37.3
B20-06	-8.3	-29.3	-31.3

Table 1 – Elevations of major stratigraphic changes at 2020 exploration locations relative to Low Water Datum

4. Geotechnical Analyses and Design

The alternatives being considered are illustrated in Attachment 2. The primary objectives of geotechnical analyses and design are to assess the potential for foundation failure through the very soft silty clay stratum under the weight of new breakwater materials and estimate the magnitude of long-term foundation settlement.

4.1 Undrained Shear Strengths for Very Soft Silty Clay Stratum

As new breakwater materials are placed, excess pore water pressures will develop in the silty clay under the weight of the new materials. Therefore, for end-of-construction conditions, undrained shear strengths are applicable for foundation stability analyses. Undrained shear strengths of the stratum were measured via laboratory unconsolidated undrained triaxial (UU) tests of undisturbed samples. A summary of laboratory UU test results are presented in Table 2, and a plot of the undrained shear strengths vs. elevation is illustrated in Figure 4. The ratio of undrained shear strength to vertical effective stress is also presented in Table 2. The relatively high ratios suggest that the stratum is overconsolidated.

Boring	Approximate Sample	Approximate Existing	Laboratory Confining	Undrained Shear	Approximate Existing	Ratio of Undrained Shear
	Elevation	Vertical	Stress (PSF)	Strength	Vertical	Strength to
	(FEET LWD)	Total		(PSF)	Effective	Vertical Effective
		Stress (PSF)			Stress (PSF)	Stress
B20-01	-20.3	2100	1872	503	532	0.95
B20-01	-25.3	2800	2592	286	845	0.34
B20-02	-19.8	2100	2016	389	532	0.73
B20-02	-22.3	2400	2448	452	689	0.66
B20-02	-22.3	2400	4896	313	689	0.45
B20-04	-17.3	2080	2016	888	657	1.35
B20-04	-17.3	2080	4032	704	657	1.07
B20-04	-24.8	3018	2880	748	1127	0.66
B20-05	-14.8	1768	3600	875	501	1.75
B20-05	-27.3	3330	3168	587	1283	0.46
B20-05	-27.3	3330	6336	531	1283	0.41

Table 2 – Undrained shear strengths and ratio of undrained shear strength to vertical effective stress

Due to the relatively high silt/sand content and low plasticity of the stratum, undisturbed samples were highly susceptible to disturbance during collection, handling, and extrusion. Sample disturbance can result in decreased undrained shear strengths as measured during UU testing. For these soils, despite having the results of the UU testing, it is difficult to accurately estimate undrained shear strength of the stratum in situ.

For stability analyses for proposed breakwaters in the vicinity of borings B20-01 and B20-02, the very soft silty clay stratum was divided into two substrata at -27 feet LWD. Based on the UU test results and engineering judgement, the upper substratum was estimated to have undrained shear strength of 400 PSF, and the lower substratum was estimated to have undrained shear strength of 500 PSF. Near boring B20-03, all clay strata were estimated to have undrained shear strength of 500 PSF.

4.2 Stability Analyses

The Morgenstern-Price analysis method was utilized in Slope/W for stability analyses. The following material properties were presumed/calculated.

Armor Stone above water

- Presumed specific gravity ≈ 2.7
- Presumed porosity ≈ 37% (Table VI-5-51 of EM 1110-2-1100)
- Calculated dry unit-weight = 106 PCF
- Presumed water content above water level ≈ 2%
- Calculated unit-weight above water = 108 PCF
- Presumed angle of internal friction ≈ 36 degrees

Breakwater stone below water

- Presumed specific gravity ≈ 2.7
- Presumed porosity ≈ 32%
- Calculated dry unit-weight = 115 PCF
- Calculated saturated unit-weight = 135 PCF
- Presumed angle of internal friction ≈ 36 degrees

Lakebed sand

- Presumed specific gravity ≈ 2.65
- Presumed void ratio ≈ 0.75
- Calculated dry unit-weight = 95 PCF
- Calculated saturated unit-weight = 121 PCF
- Presumed angle of internal friction ≈ 30 degrees

Silty clay above -27 feet LWD in vicinity of borings B20-01 and B20-02

- Measured saturated unit-weight ≈ 125 PCF
- Estimated undrained shear strength ≈ 400 PSF

Silty clay below -27 feet LWD in vicinity of borings B20-01 and B20-02

- Measured saturated unit-weight ≈ 125 PCF
- Estimated undrained shear strength ≈ 500 PSF

Silty clay strata in vicinity of boring B20-03

- Measured saturated unit-weight ≈ 125 PCF
- Estimated undrained shear strength ≈ 500 PSF

A survey of existing lakebed bathymetry was conducted by USACE in November 2019 and the results are presented in Figure 5. This information was used to select lakebed elevations for stability analyses. The proposed alignments for the offshore breakwaters are also illustrated on Figure 5. The proposed crest elevation for the west offshore breakwaters is +12 feet LWD, and the proposed crest elevation for the east offshore breakwater is +10 feet LWD.

Stability analyses for the west offshore breakwaters in the vicinity of boring B20-01 are illustrated on Figures 6 and 7. These results indicate stability berms, with crest elevations at -7 feet LWD, are required to achieve an end-of-construction target factor of safety of 1.3. The crests of the stability berms extend horizontally 70 feet from the breakwater centerline. Stability analyses for the west offshore breakwaters in the vicinity of boring B20-03 are illustrated on Figures 8 and 9. These results indicate

stability berms, with crest elevations at -10 feet LWD, are required to achieve an end-of-construction target factor of safety of 1.3. The crests of the stability berms extend horizontally 60 feet from the breakwater centerline. The stability analysis for the east offshore breakwater in the vicinity of boring B20-02 is illustrated in Figure 10. These results indicate stability berms, with crest elevations at -7 feet LWD, are required to achieve an end-of-construction target factor of safety of 1.3. The crests of the stability berms extend horizontally 50 feet from the breakwater centerline.

4.3 Settlement Analysis

Four undisturbed samples collected from the very soft silty clay stratum were subjected to laboratory consolidation testing. Plots of effective pressure vs. strain are presented as Figure 11 and the average values are plotted on Figure 12.

Due to the combination of loading and subsurface conditions, the maximum foundation settlement will likely occur at the north ends of the west breakwaters, in the vicinity of boring B20-01. At this location, existing vertical effective stresses near the middle of the very soft silty clay stratum are approximately 750 PSF. The proposed breakwater construction with stability berms will increase vertical effective stresses to approximately 2700 PSF. As illustrated on Figure 12, for this range of effective pressures, the stress-strain response of the silty clay is approximately linear. The slope of this line represents the constrained modulus, which is approximately 65 KSF.

An effective angle of internal friction of 33 degrees was presumed (Table 5.16 Duncan et. al., 2014) and Poisson's ratio was estimated as follows.

Poisson's ratio = $(1-\sin\phi)/(2-\sin\phi) = 0.31$ (Duncan and Bursey 2013)

Elastic modulus can be estimated from constrained modulus using the following relationship.

E = M * (1+v) * (1-2v) / (1-v)

E = Elastic Modulus

M = Constrained Modulus

v = Poisson's Ratio

For a constrained modulus of 65 KSF and Poisson's ratio of 0.31, the corresponding elastic modulus is approximately 47 KSF. A SIGMA/W load/deformation model, as shown on Figure 13, was used to estimate the settlement response of the very soft silty clay stratum under the weight of the proposed breakwater. Calculated settlement magnitudes are relatively insensitive to the elastic modulus and Poisson's ratio assumed for the breakwater materials. Therefore, a relatively low elastic modulus of 200 KSF was assumed to minimize bridging effects.

The estimated long-term settlement profile perpendicular to the breakwater is included as Figure 14. The estimated magnitude of settlement under the breakwater crest is approximately 0.6 feet. A significant portion of this settlement will likely occur during construction without significant

consequence. Therefore, post-construction settlements related to consolidation of the very soft silty clay stratum are likely to be less than 6 inches, and overbuilding is unnecessary. However, when estimating quantities for breakwater materials, an average of 6 inches of settlement during construction should be assumed for all breakwaters, including those placed inside the existing channel.

4.4 Filter Requirements

The lakebed beneath the footprint of proposed breakwaters consists of fine sand. Therefore, as discussed on page VI-5-95 of EM 1110-2-1100, a filter layer should be placed between the breakwater stone and the lakebed to prevent significant movement of lakebed sand beneath the breakwater. The filter layer may be omitted if stability of the lakebed soils beneath the proposed breakwaters, under the expected hydrodynamic conditions, can be demonstrated.

The filter layer placed directly on the lakebed should be a minimum of 2 feet thick and constructed with ODOT Coarse Aggregate Size 57. The bedding layer should also be a minimum of 2 feet thick and constructed with ODOT Dumped Rock Fill Type D. Above the bedding layer, a toe berm should be incorporated to support the main armor layer. Guidance for toe berm design is included in EM 1110-2-1100 beginning on page VI-5-111.

Potential use of a geotextile filter rather than a coarse aggregate filter can be evaluated during final design.

4.5 Stability Berms

As previously discussed, stability analyses indicated that three types of stability berms are needed for the proposed breakwaters north of the existing piers. Locations for Type 1, Type 2, and Type 3 stability berms are shown on Figure 15. Foundation platforms of ODOT Dumped Rock Fill Type D can be used to construct these. Required volumes of dumped rock fill can be reduced by incorporating sand-filled geosynthetic containers (USACE 2021) into the foundation platforms.

The Type 1 foundation platform should be constructed to a minimum crest elevation of -7 feet LWD with a minimum crest width of 140 feet. The Type 2 foundation platform should be constructed to a minimum crest elevation of -10 feet LWD with a minimum crest width of 120 feet. The Type 3 foundation platform should be constructed to a minimum crest elevation of -7 feet LWD with a minimum crest width of 100 feet.

The centerline of the foundation platforms should match the breakwater centerlines and platform side slopes should be constructed to 1V:1.5H. A filter layer, as discussed above, should be used under the central portion of the foundation platforms beneath where underlayer and armor stone will be placed.

4.6 Sheet Pile Walls

Alternatives 2B and 3B include installation of new sheet pile walls. For feasibility-level design, lateral earth pressures acting on the sheet pile walls can be estimated via Coulomb active earth pressure theory and effective stress analyses utilizing the following soil parameters.

Existing soils above elevation -36 feet LWD

- $\phi' = 30$ degrees
- Ysat = 125 PCF
- Ymoist = 125 PCF
- $\delta' = 9$ degrees

Existing soils below elevation -36 feet LWD

- $\phi' = 36$ degrees
- Ysat = 135 PCF
- δ ' = 11 degrees

Gravel backfill

- $\phi' = 34$ degrees
- Ysat = 135 PCF
- Ymoist = 125 PCF
- δ ' = 17 degrees

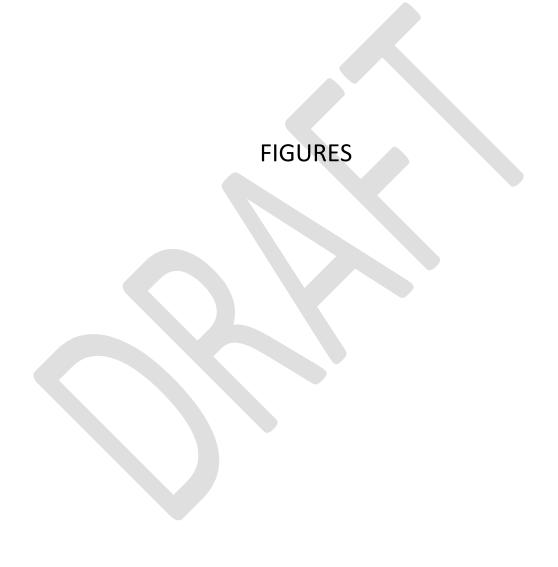
Groundwater levels can be assumed to be roughly the same as lake water levels. If the use of sheet pile walls is deemed to be feasible, these recommendations can be further refined.

5. References

Coakley, J.P. and Lewis, C.F.M.; 1985; *Postglacial Lake Levels in the Erie Basin*; Geological Association of Canada Special Paper 30: pp. 195-212.

Dreimanis, A.; 1958; Wisconsin Stratigraphy at Port Talbot on the North Shore of Lake Erie, Ontario; Ohio Journal of Science 58(2): pp. 65-84.

Duncan, J.M. and Bursey, A.; 2013; *Soil Modulus Correlations*; Proceedings: Foundation Engineering in the Face of Uncertainty.


Duncan, J.M., Wright, S.G., and Brandon, T.L.; 2014; Soil Strength and Slope Stability, 2nd Ed.

Holcombe, T.L., Taylor, L.A., Reid, D.F., Warren, J.S., Vincent, P.A., and Herdendorf, C.E.; 2003; *Revised Lake Erie Postglacial Lake Level History Based on New Detailed Bathymetry*; Journal of Great Lakes Research 29(4): pp. 681-704.

ODNR, 2006; *Detailed Soils for the Lake Erie Watershed*. Ohio Department of Natural Resources. Accessed at http://www.dnr.state.oh.us/website/ocm_gis/mapviewer_app/

USACE, 1986; Detailed Project Report on Shoreline Erosion/Beach Restoration on Lake Erie – Mentor Beach Park

USACE, 2021; DRAFT DETAILED PROJECT REPORT AND ENVIRONMENTAL ASSESSMENT - SECTION 204 BENEFICIAL USE OF DREDGED MATERIAL FOR ECOSYSTEM RESTORATION FAIRPORT HARBOR, OHIO

Mentor Harbor Section 107 B10 GEOTECHNICAL APPENDIX

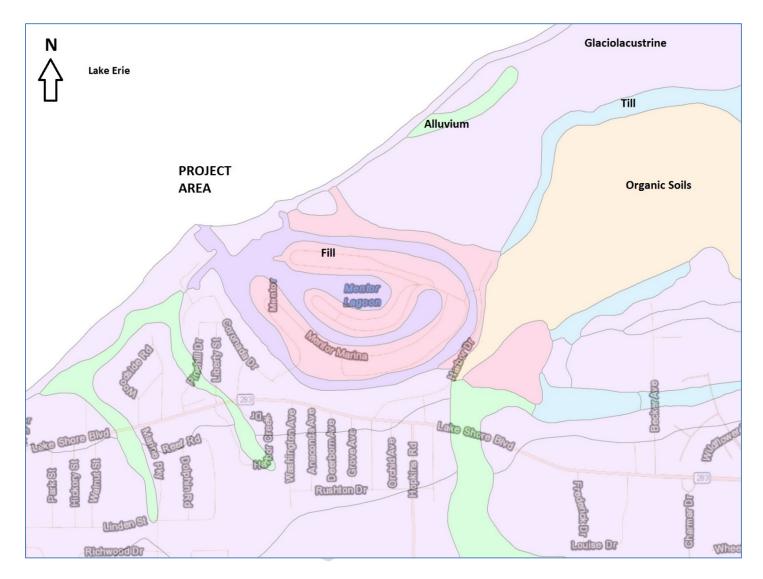


Figure 1 – Surficial geology map for vicinity of Mentor Harbor (ODNR, 2006)

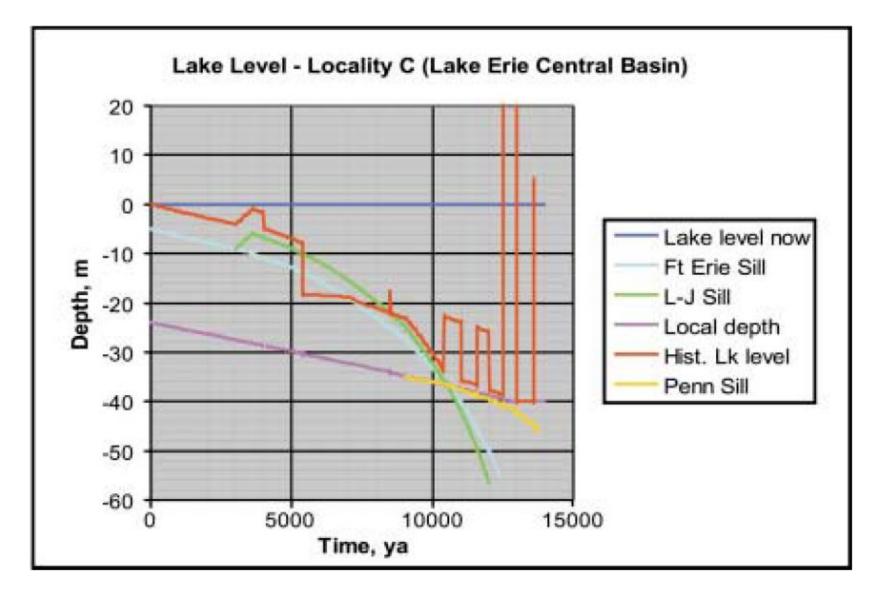


Figure 2 – Estimated Lake Erie post-glacial water levels in Central Basin (from Holcombe et. al., 2003)

Mentor Harbor Section 107 B12 GEOTECHNICAL APPENDIX

Figure 3 – Boring location plan

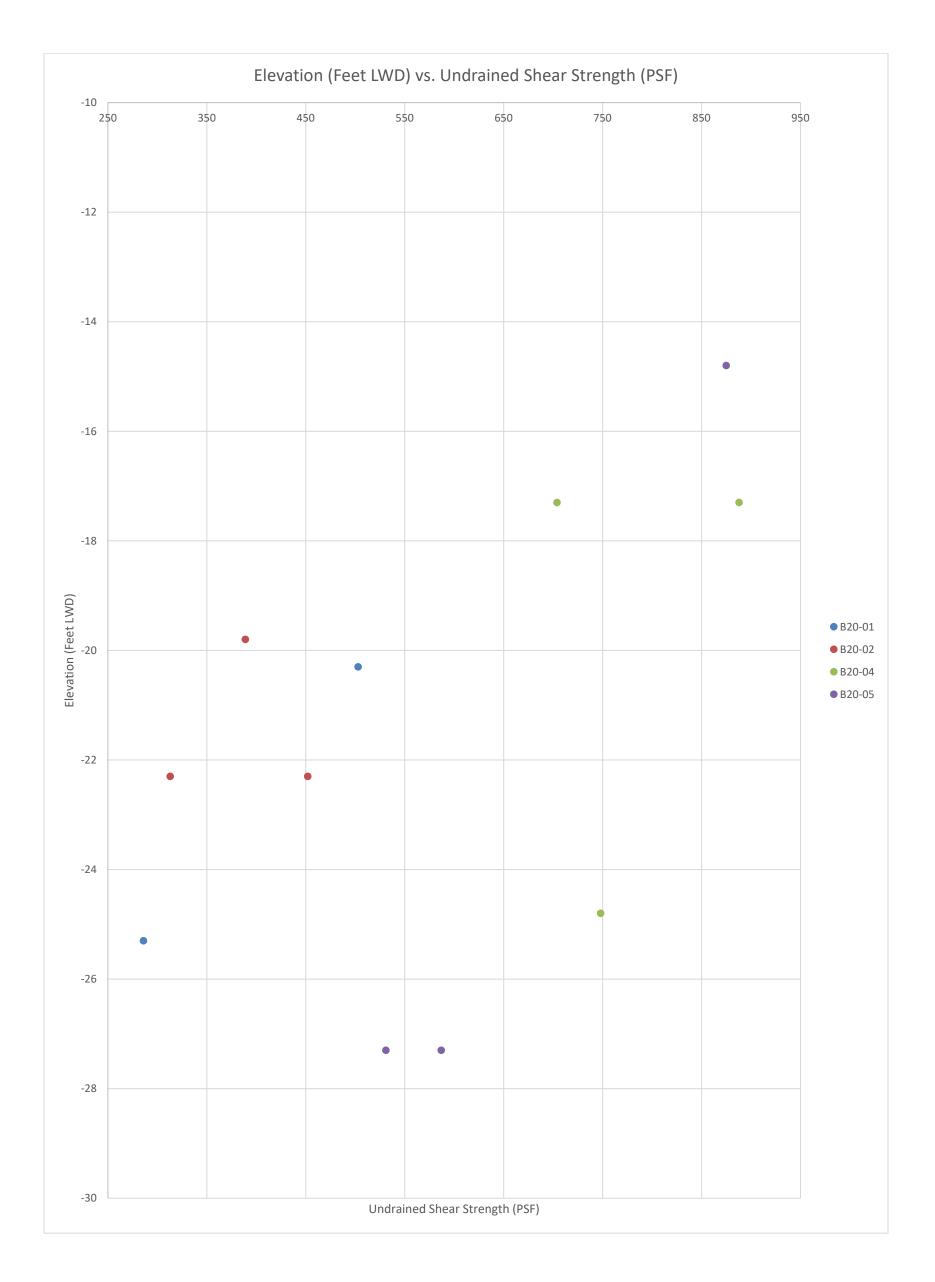


Figure 4 – Undrained shear strengths from laboratory UU testing vs. elevation

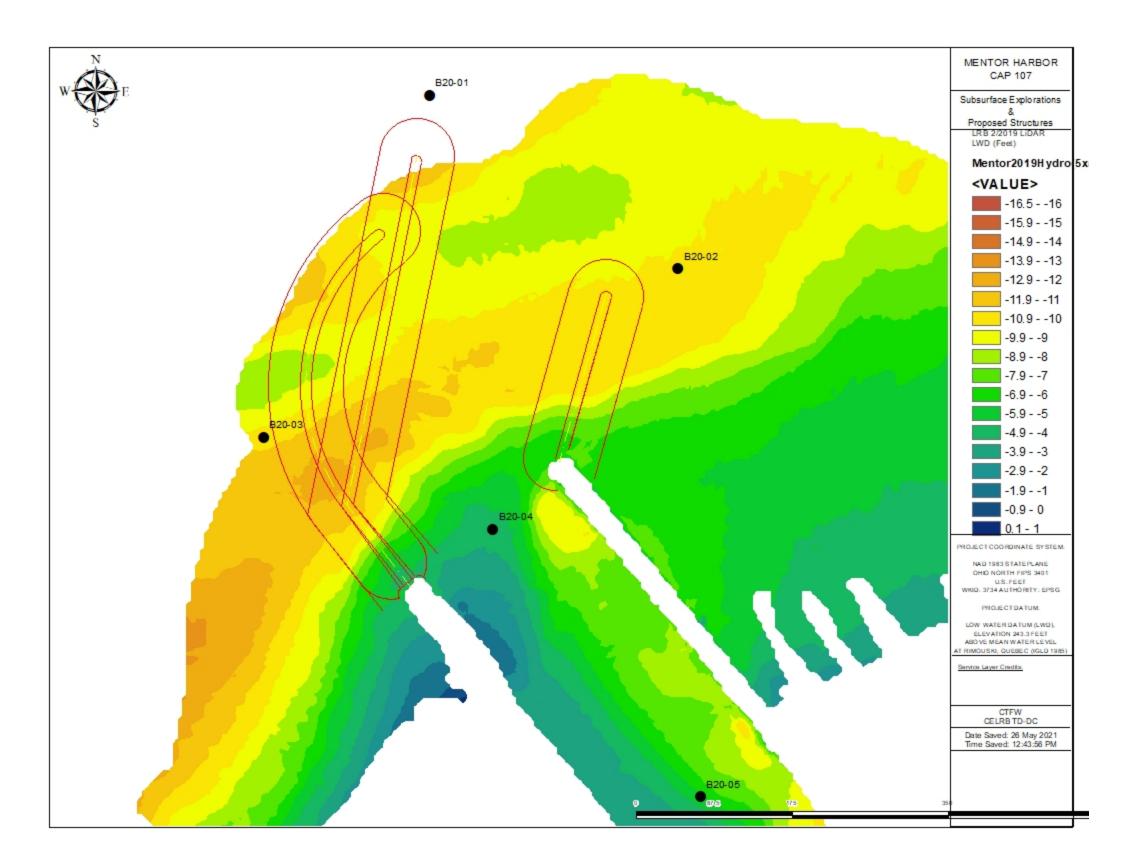


Figure 5 – Lakebed bathymetry in November 2019 (Feet LWD)

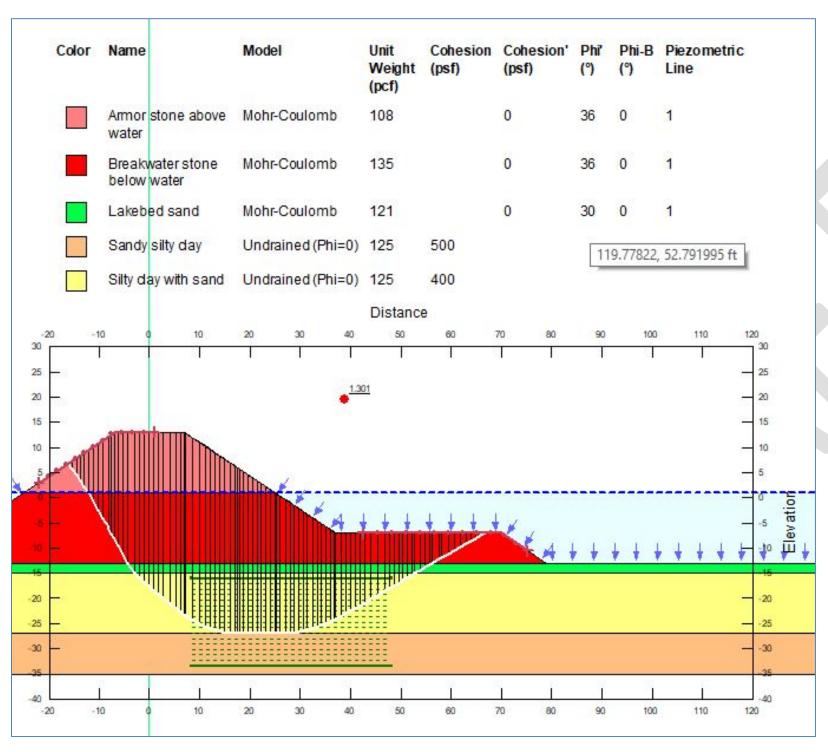


Figure 6 – Stability analysis for west offshore breakwater in vicinity of boring B20-01 – slip surface through stability berm

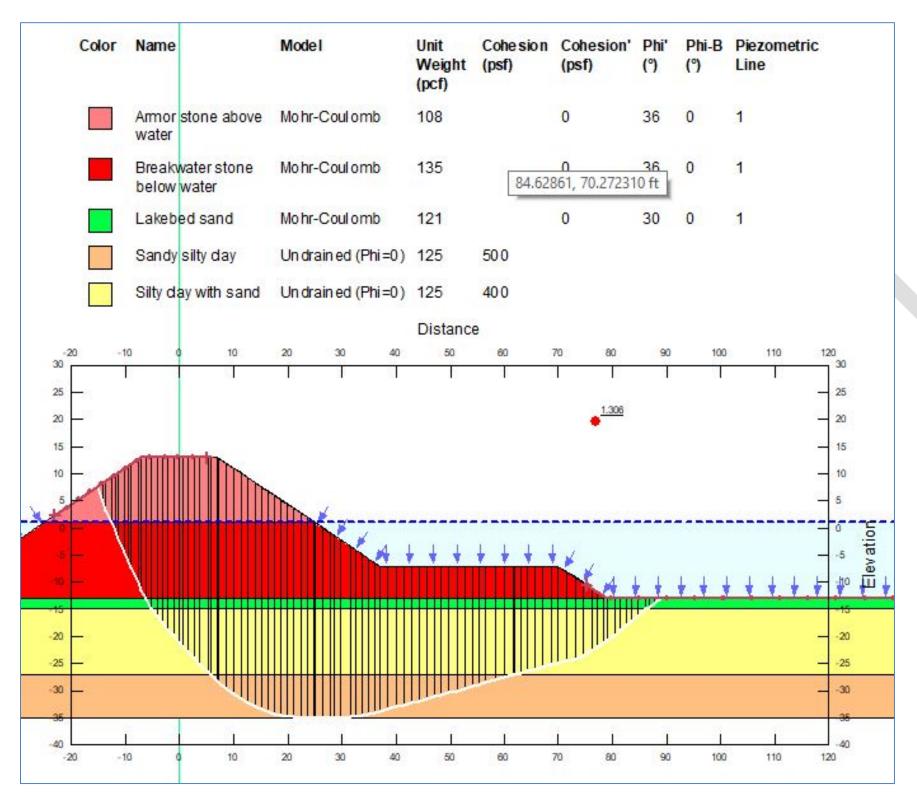


Figure 7 – Stability analysis for west offshore breakwater in vicinity of boring B20-01 – slip surface beyond stability berm

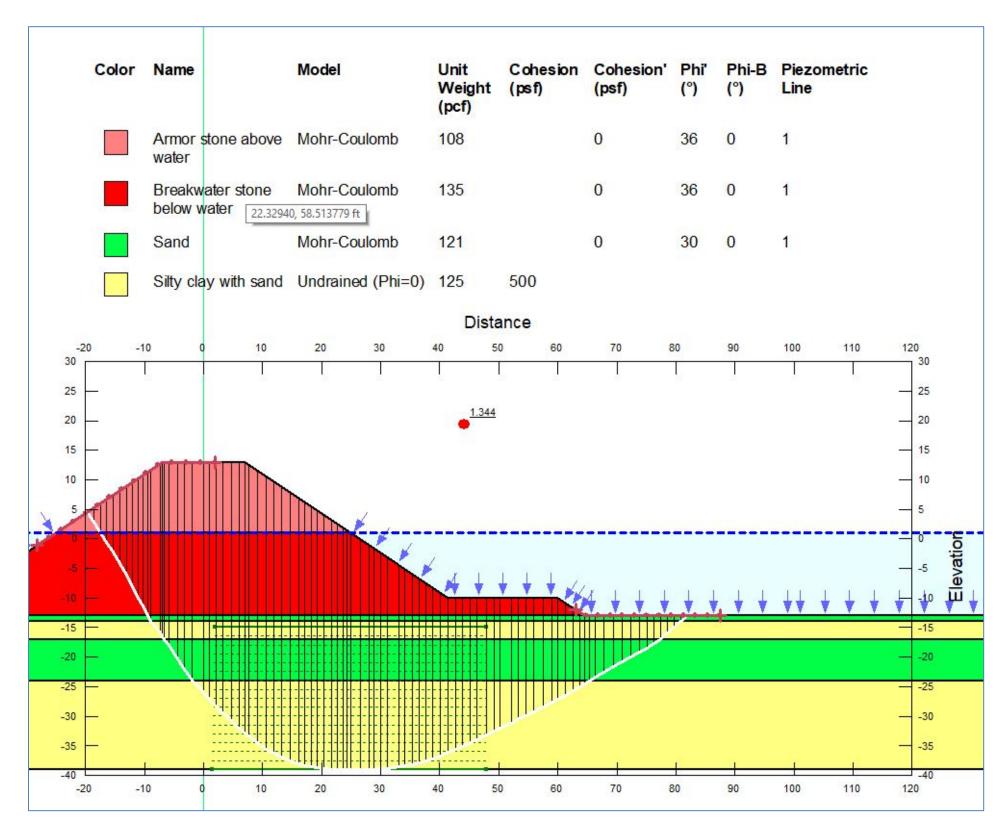


Figure 8 – Stability analysis for east offshore breakwater in vicinity of boring B20-03 – slip surface beyond stability berm

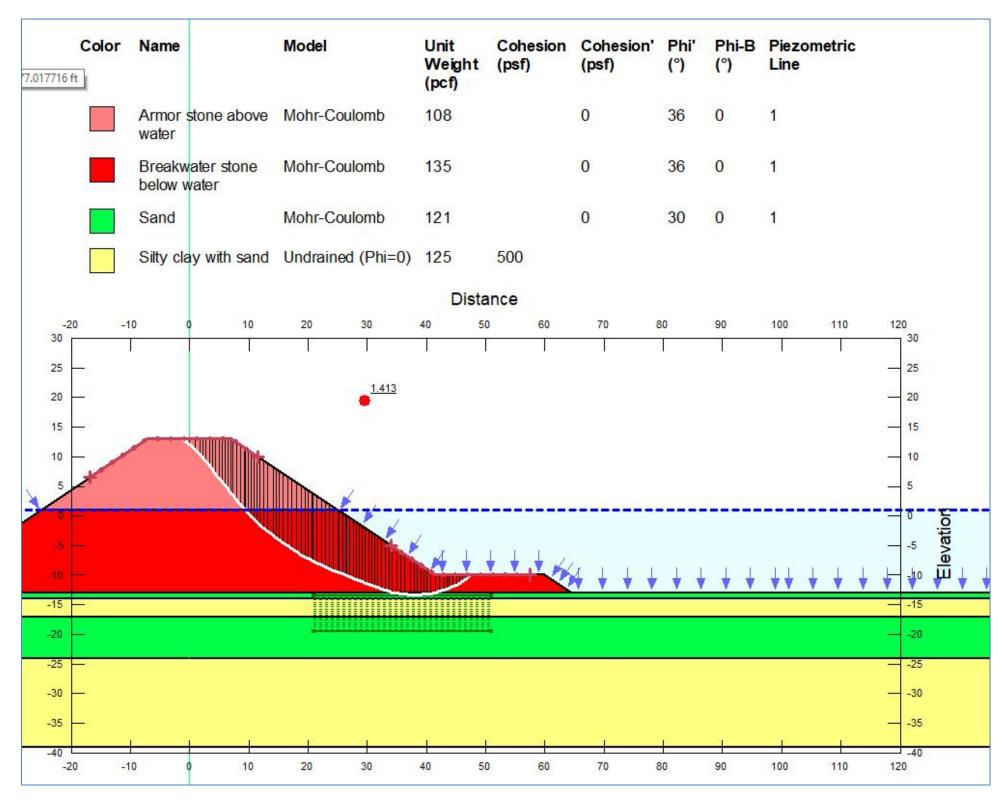


Figure 9 – Stability analysis for east offshore breakwater in vicinity of boring B20-03 – slip surface through stability berm

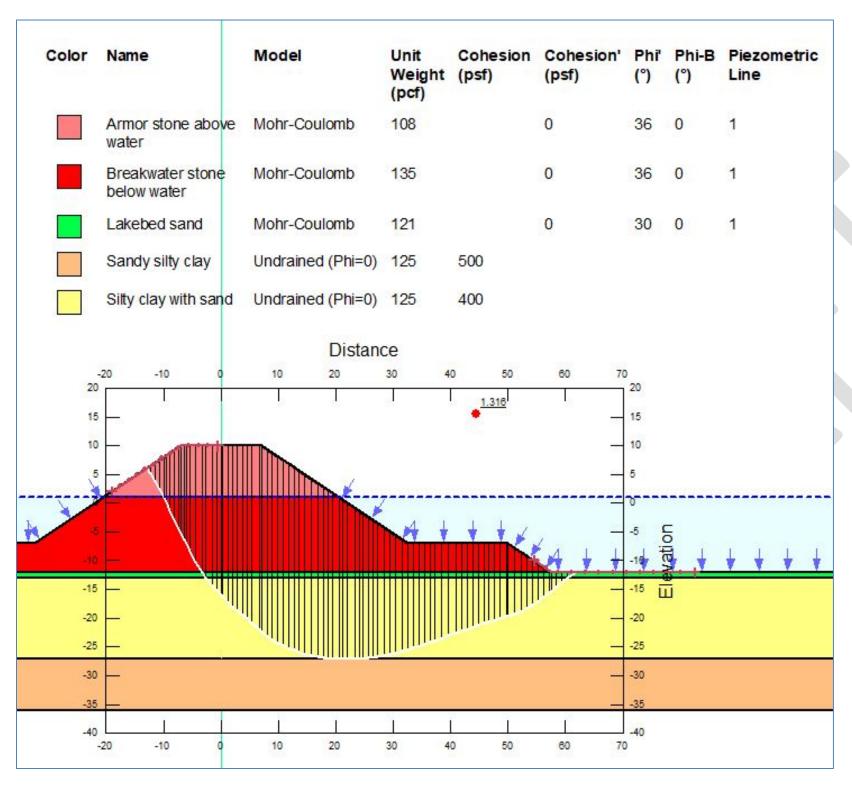


Figure 10 – Stability analysis for east offshore breakwater in vicinity of boring B20-02

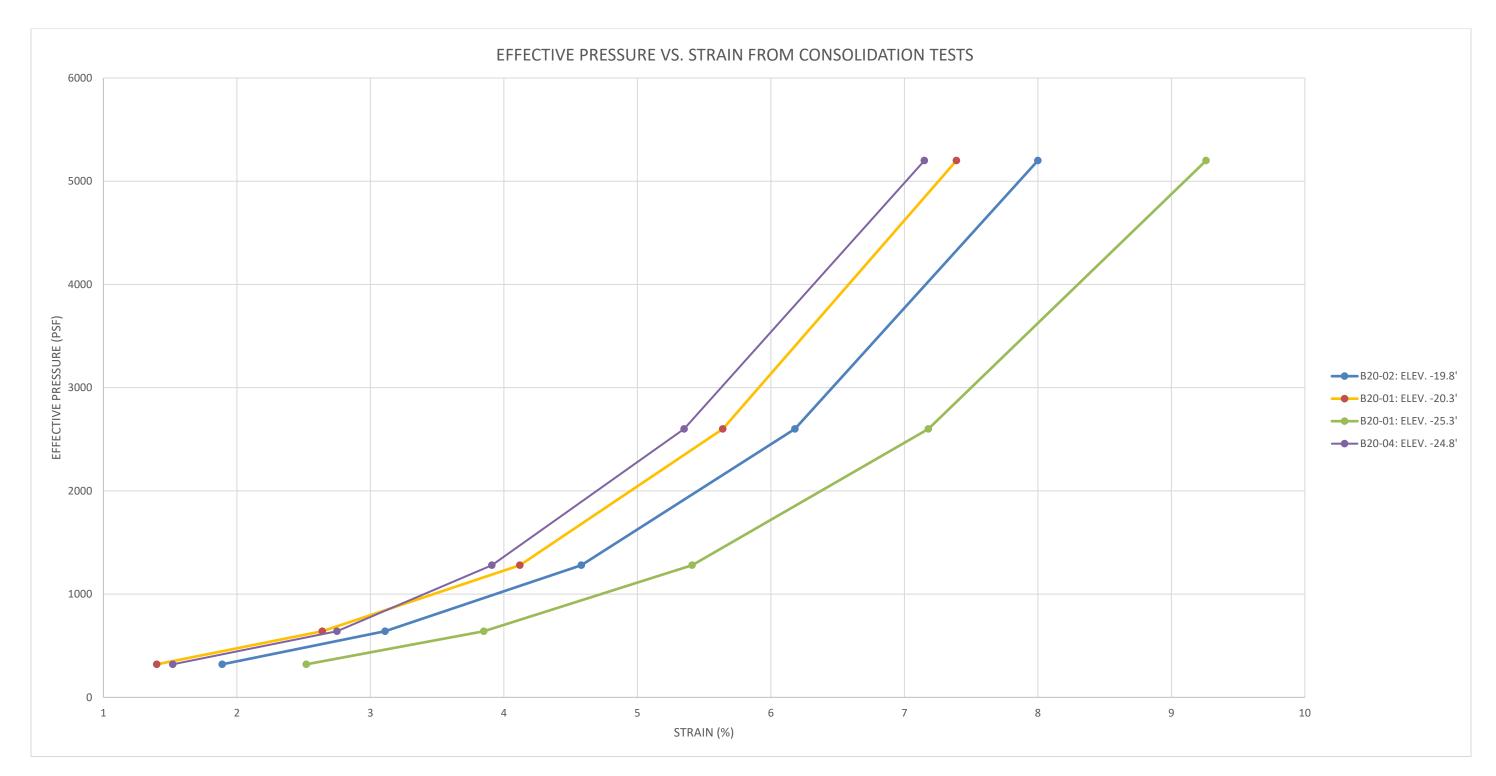


Figure 11 – Effective pressure vs. strain from laboratory consolidation tests

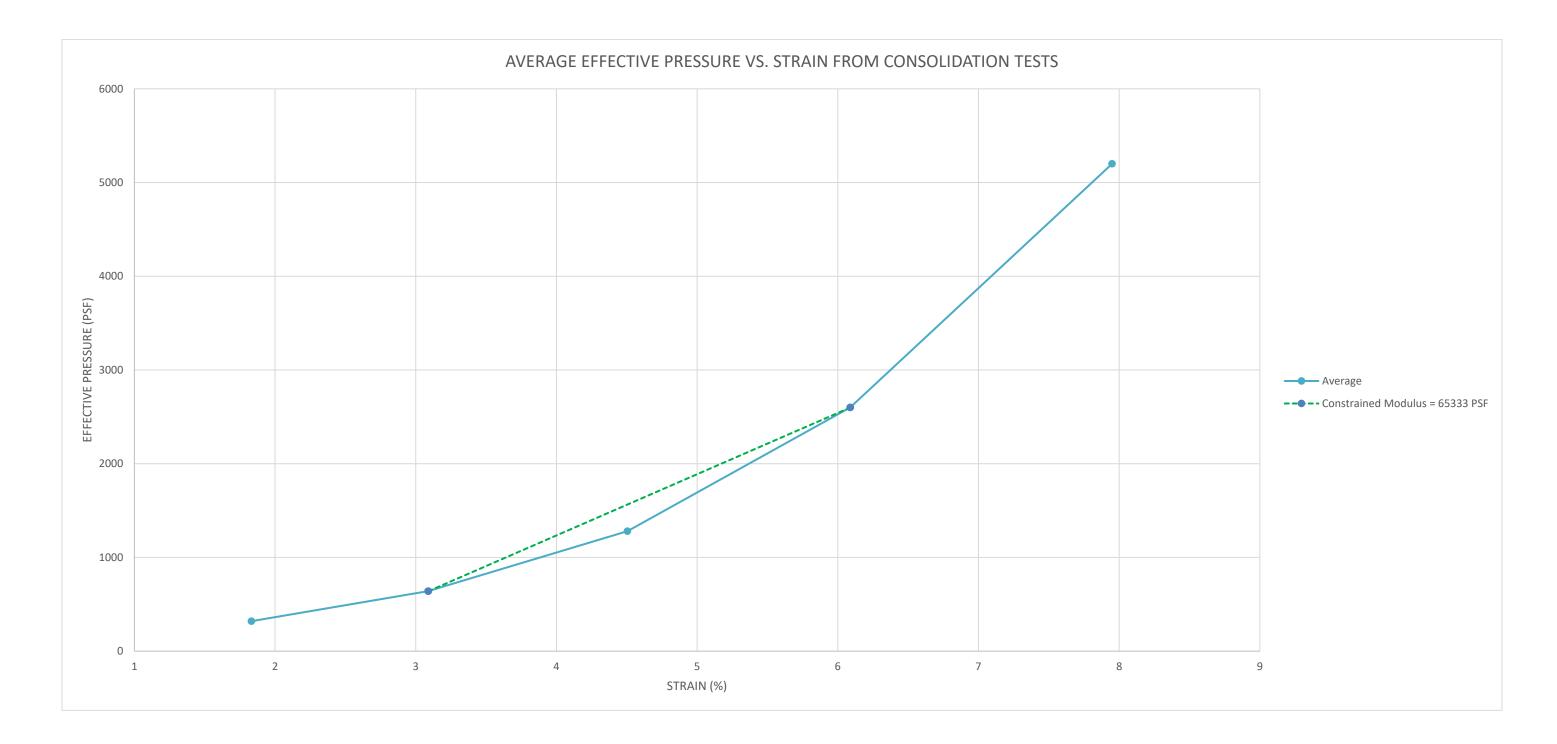


Figure 12 – Average effective pressure vs. strain from laboratory consolidation tests

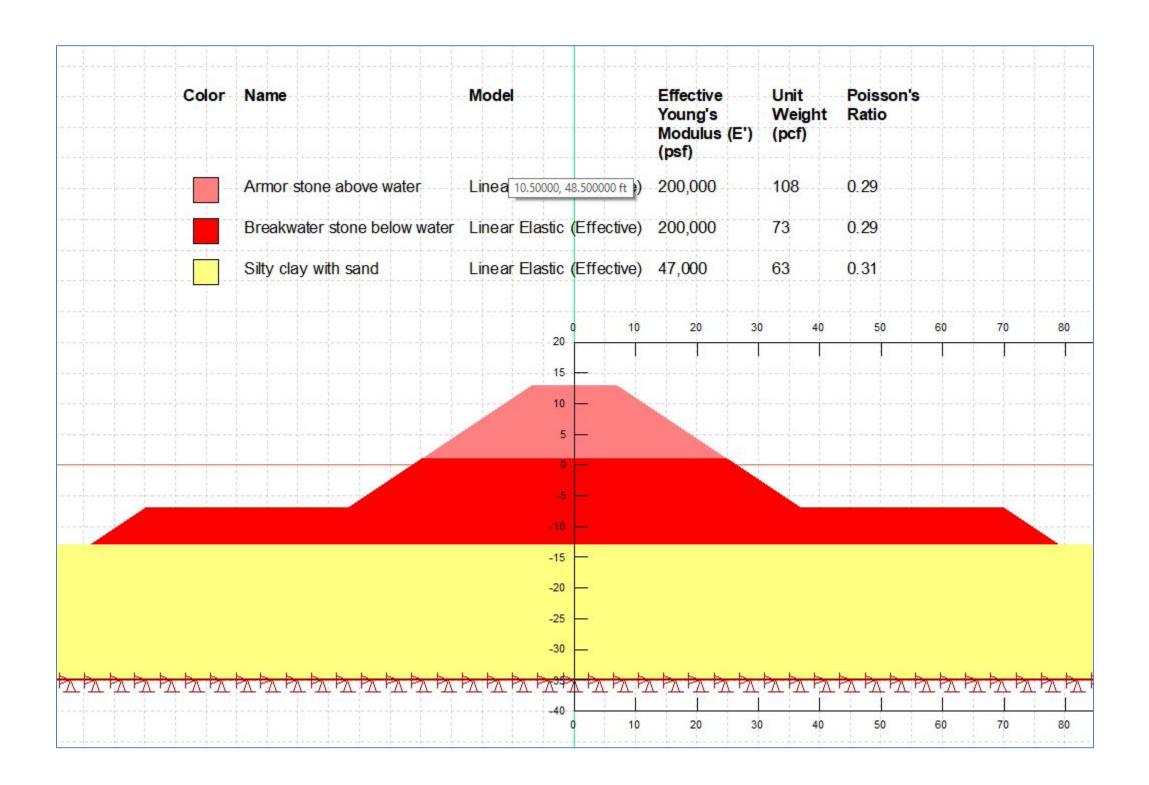


Figure 13 – Sigma/W load-deformation model

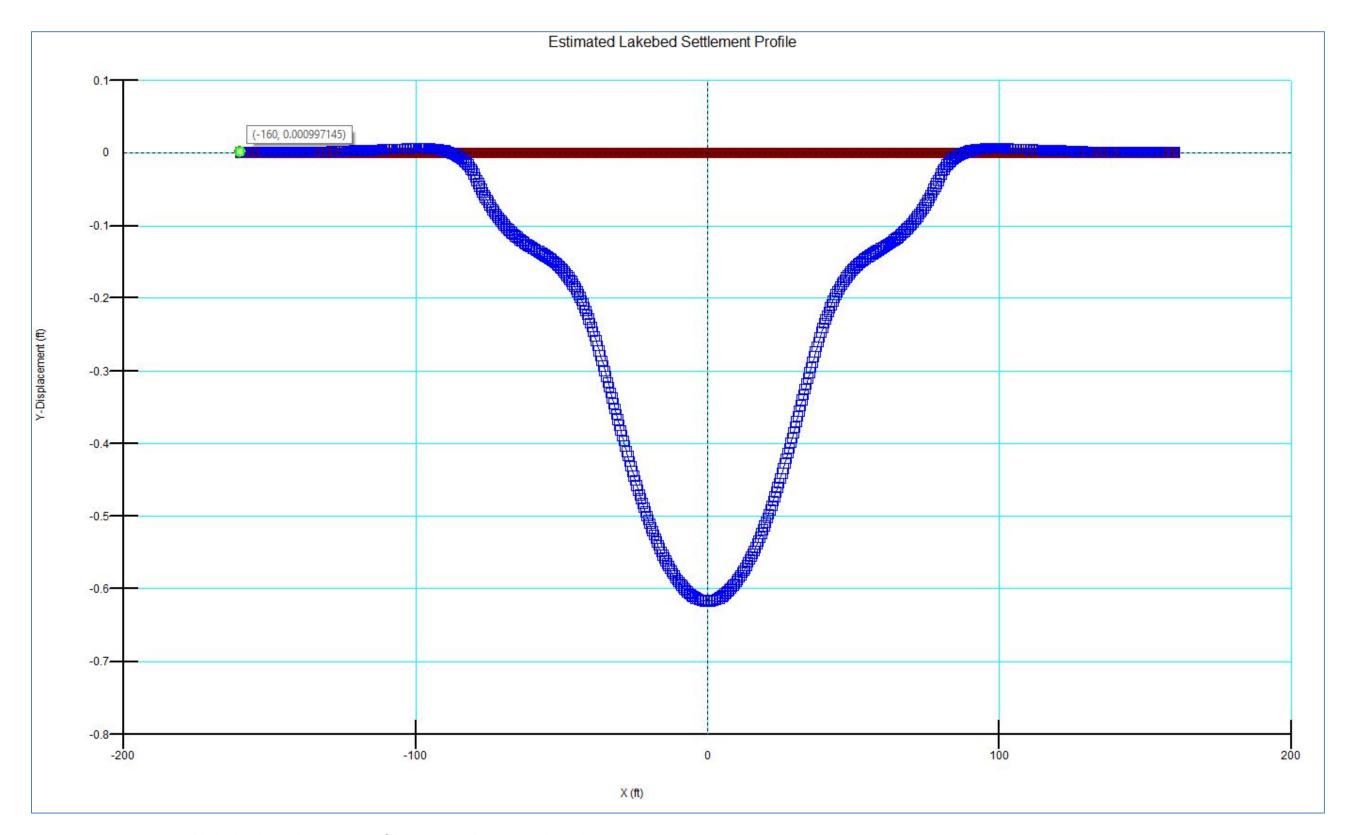


Figure 14 – Estimated lakebed settlement profile perpendicular to breakwater centerline

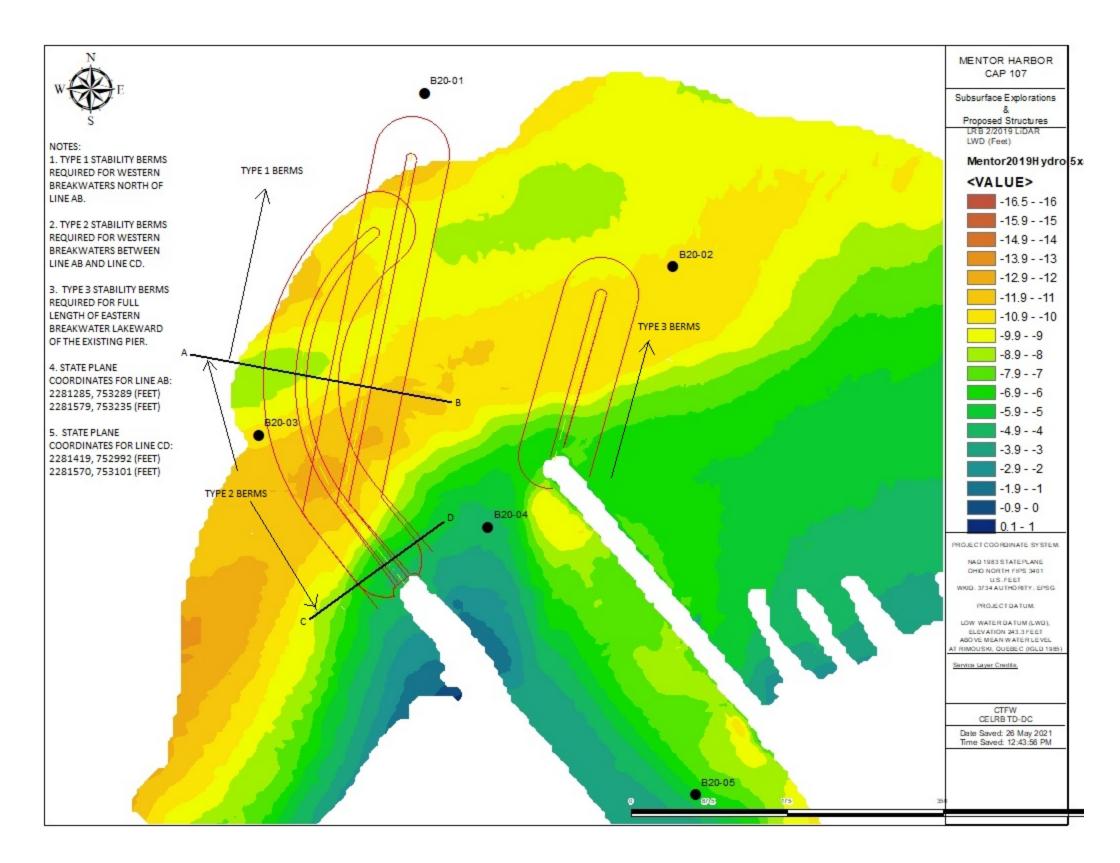
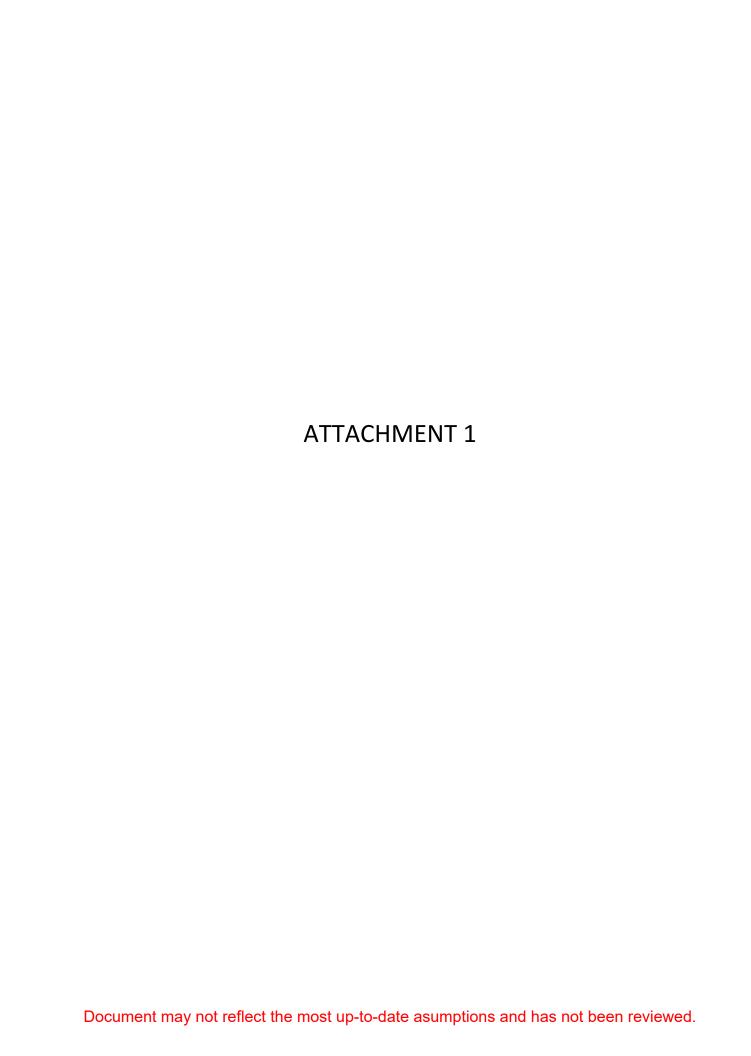



Figure 15 – Locations for Type 1, Type 2, and Type 3 stability berms

Boring Designation B00-01 INSTALLATION DIVISION SHEET **DRILLING LOG** 2 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL State Plane Mentor Harbor NAD83 LWD 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B00-01 N 752,165.0 E 2,281,726.0 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED Ohio Testbor 0 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 14. DEPTH GROUND WATER 5. DIRECTION OF BORING DEG FROM BEARING STARTED COMPLETED VERTICAL 15. DATE BORING 7/21/00 7/21/00] INCLINED 16. ELEVATION TOP OF BORING 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 44.1 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel **ELEV** DEPTH Samb REMARKS N_f N_{60} Fines ASTM Class Sand REC Ⅎ ₫ ğ (Description) 0.0 0.2 0' to 0.2': ASPHALT MOIST WATER ENCOUNTERED 0.2' to 5.5': BLACK PEAT 24.6' W/ORGANICS 3 WATER @ COMPLETION MOIST 14.0' 2.5 1 3 1 0 5.0 0 5.5 5.5' to 6.9': VERY SOFT GRAY SILTY CLAY TRACE PEAT MOIST 6.9 1 6.9' to 15.5': VERY SOFT 1 BROWN/GRAY SILTY CLAY W/TRACE 7.5 2 SILT LAYERS MOIST 2 1 10.0 3 12.5 2 3 -15.0 5 15.5 15.5' to 24.6': VERY SOFT GRAY SILTY CLAY MOIST 17.5 2 1 20.0 3 22.5 1 2 24.6

ACE MVD WITH RAPID CPT 2008 11 17.GDT

1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ

B00-01 **Boring Designation** INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 2 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 752,165.0 E 2,281,726.0 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS ELEV DEPTH Gravel ASTM Class REMARKS N_{f} Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -25.0 24.6' to 26': BROKEN SHALE W/ 4 VERY SOFT SILTY CLAY & SILTS 26.0 WET (continued) 26' to 31': MEDIUM STIFF, GRAY SILTY CLAY / SOME ROCK **FRAGMENTS** 27.5 WET 5 -30.08 31.0 31' to 44': VERY DENSE GRAY SILT W/ SOME GRAVELS & ROCK FRAGS MOIST 32.5 15 26 37 -35.0 63 -37.5 31 51 55 -40.0 106 -42.5 37 50 44' to 44.1': POSSIBLE BEDROCK 50 (SANDSTONE)(SILTSTONE)? /1" /1" MOIST 44.1': BORING TERMINATED

Boring Designation B00-02 INSTALLATION DIVISION SHEET **DRILLING LOG** 2 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL State Plane Mentor Harbor NAD83 LWD 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B00-02 N 752,151.0 E 2,281,587.0 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED Ohio Testbor 0 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 14. DEPTH GROUND WATER 5. DIRECTION OF BORING DEG FROM **BEARING** STARTED COMPLETED VERTICAL 15. DATE BORING 7/21/00 7/21/00] INCLINED 16. ELEVATION TOP OF BORING 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 44.8 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel **ELEV** DEPTH Samb REMARKS $N_{\rm f}$ N_{60} Fines ASTM Class Sand REC Ⅎ ₫ 8 (Description) 0.0 0.2 0' to 0.2': ASPHALT 0.2' to 2.8': SOFT BROWN/GRAY WATER ENCOUNTERED SILTY CLAY 24.6' MOIST 3 WATER @ COMPLETION COULD NOT BE 2.5 2.8 3 MEASURED DUE TO 2.8' to 6.3': BLACK 6 **BOREHOLE CAVING** PEAT/VEGETATION 1 MOIST 0 5.0 1 6.3 1 6.3' to 16': VERY SOFT TO SOFT 0 GRAY/BROWN SILTY CLAY 1 MOIST 7.5 1 1 1 1 10.0 2 -12.5 2 2 3 -15.0 5 16.0 16' to 31': VERY SOFT GRAY SILTY CLAY W/TRACE ORGANICS MOIST 17.5 1 2 20.0 3 22.5 1 1

ACE MVD WITH RAPID CPT 2008 11 17.GDT

1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ

Boring Designation B00-02 INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 2 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 752,151.0 E 2,281,587.0 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS ELEV Gravel DEPTH Samp ASTM Class REMARKS N_{f} Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -25.0 3 16' to 31': VERY SOFT GRAY SILTY CLAY W/TRACE ORGANICS MOIST (continued) 27.5 2 -30.02 31.0 31' to 37': MEDIUM STIFF GRAY SILTY CLAY W/SOME LAYERS OF SANDY SILT MOIST 32.5 WET SILT LAYER 34.8' 2 4 -35.0 7 37.0 37' to 44.8': DENSE TO VERY DENSE -37.5 GRAY SANDY SILT W/SOME ROCK FRAGMENTS AND GRAVELS 8 WET LAYER BETWEEN 40' AND 43.5' 18 23 -40.0 41 -42.5 23 23 50 50 44.8': BORING TERMINATION /4" DEPTH

Boring Designation B00-03 INSTALLATION DIVISION SHEET **DRILLING LOG** 2 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL State Plane NAD83 LWD Mentor Harbor 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B00-03 N 752,325.0 E 2,281,517.0 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED Ohio Testbor 0 0 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING DEG FROM **BEARING** COMPLETED VERTICAL 15. DATE BORING 7/24/00 7/24/00] INCLINED 16. ELEVATION TOP OF BORING 5.0 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 44.1 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS Gravel DEPTH **ELEV** Samb REMARKS $N_{\rm f}$ N_{60} Fines ASTM Class Sand REC Ⅎ ₫ 8 (Description) 0.0 15 0' to 2.5': BROWN SANDS W/GRAVELS 27 MOIST WATER ENCOUNTERED 31 2.5' 58 WATER @ COMPLETION 2.5 2.5 30.0' ??? 2.5 2.5' to 5.5': VERY LOOSE **BROWN/GRAY SANDS** 2 5.0 2 -0.5 5.5 5.5' to 6.9': ORGANICS (PEAT) MOIST -1.9 6.9 0 6.9' to 12': VERY SOFT GRAY SILTY CLAY W/SOME ORGANICS 7.5 1 MOIST 0 2 1 10.0 3 -7.0 12.0 12' to 17': MEDIUM STIFF 12.5 **BROWN/GRAY SILTY CLAY** MOIST 2 3 3 15.0 6 -12.0 17.0 17' to 37': VERY SOFT TO SOFT 17.5 GRAY SILTY CLAY W/SOME **ORGANICS** MOIST 2 2 20.0 4 22.5 1 1

11 17.GDT

ACE MVD WITH RAPID CPT

1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ

B00-03 **Boring Designation** INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 2 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 752,325.0 E 2,281,517.0 5.0 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % DEPTH Gravel ELEV $N_{\rm f}$ Samp ASTM Class REMARKS Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -25.0 2 17' to 37': VERY SOFT TO SOFT GRAY SILTY CLAY W/SOME **ORGANICS** MOIST (continued) 27.5 2 -30.04 32.5 1 2 2 -35.0 4 -32.0 37.0 37' to 44.1': MEDIUM DENSE TO -37.5 DENSE GRAY CLAYEY SILT W/SOME GRAVELS & ROCK FRAGMENTS WET 9 13 20 -40.0 33 -42.5 19 -39.1 44.1 50 44.1': BORING TERMINATION 50 /1" /1" **DEPTH**

Boring Designation B00-04 INSTALLATION DIVISION SHEET **DRILLING LOG** 2 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL State Plane NAD83 LWD Mentor Harbor 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B00-04 N 752,454.0 E 2,281,661.0 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED Ohio Testbor 0 0 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING DEG FROM **BEARING** COMPLETED VERTICAL 15. DATE BORING 7/24/00 7/24/00] INCLINED 16. ELEVATION TOP OF BORING 6.0 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 45.0 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS DEPTH Gravel **ELEV** Samb N_{60} Fines ASTM Class REMARKS Sand REC Ⅎ ₫ 8 (Description) 0.0 8 0' to 3': BROWN SAND W/GRAVELS & COBBLES 2 MOIST WATER ENCOUNTERED 5 3.0' 7 WATER @ COMPLETION COULD NOT BE 2.5 3.0 3.0 MEASURED DUE TO 3' to 4.4': LOOSE GRAY SAND **BOREHOLE CAVING** WET 1.6 4.4 4.4' to 6.9': ORGANICS, PEAT 3 5.0 WET 6 -0.9 6.9 1 6.9' to 12.5': VERY SOFT GRAY 1 SILTY CLAY W/TRACE ORGANICS 7.5 2 MOIST 1 1 0 10.0 1 -6.5 12.5 12.5 12.5' to 17': SOFT BROWN/GRAY SILTY CLAY W/TRACE ORGANICS MOIST 2 4 15.0 6 -11.0 17.0 17' to 37': VERY SOFT TO SOFT 17.5 GRAY SILTY CLAY W/ SOME **ORGANICS** MOIST 0 2 20.0 3 22.5 0 0

17.GDT

ACE MVD WITH RAPID CPT 2008 11

1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ

Boring Designation B00-04 INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 2 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 752,454.0 E 2,281,661.0 6.0 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % ELEV Gravel DEPTH Samp ASTM Class REMARKS N_{f} Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -25.0 2 17' to 37': VERY SOFT TO SOFT GRAY SILTY CLAY W/ SOME **ORGANICS** MOIST (continued) 27.5 2 -30.04 32.5 1 2 -35.0 3 -31.0 37.0 37' to 42': MEDIUM STIFF GRAY -37.5 SILTY CLAY W/TRACE & SOME **GRAVELS** MOIST 5 5 -40.0 10 -36.0 42.0 42' to 45': DENSE GRAY SANDY SILT -42.5 WITH ROCK FRAGMENTS, LAYERED MOIST 15 20 26 -39.0 45.0 45.0 46 45': BORING TERMINATION DEPTH

Boring Designation B00-05 DIVISION INSTALLATION SHEET **DRILLING LOG** 2 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL State Plane NAD83 LWD Mentor Harbor 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B00-05 N 752,600.0 E 2,281,854.0 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED Ohio Testbor 0 0 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING DEG FROM **BEARING** COMPLETED VERTICAL 15. DATE BORING 7/24/00 7/24/00] INCLINED 16. ELEVATION TOP OF BORING 7.0 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 45.0 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS DEPTH Gravel **ELEV** Samb N_{60} Fines ASTM Class REMARKS Sand REC Ⅎ ₫ 8 (Description) 0.0 0' to 5.5': LOOSE TO MEDIUM 1 DENSE BROWN SAND WITH SOME 1 **GRAVELS** WATER ENCOUNTERED 2 MOIST TO WET 3.5' 4 WATER @ COMPLETION 3 8 0' 2.5 5 5 5.0 11 1.5 5.5 5.5' to 6.9': LOOSE GRAY SAND WET 0.1 6.9 3 6.9' to 8': BLACK ORGANICS / PEAT 7.5 MOIST -1.0 8.0 4 8' to 11.5': VERY SOFT GRAY SILTY CLAY MOIST 1 10.0 2 -4.5 11.5 11.5' to 23.7': MEDIUM STIFF BROWN/GRAY MOTTLED SILTY 12.5 CLAY MOIST 2 5 15.0 9 17.5 2 3 4 20.0 7 22.5 -16.7 - 23.7 1 23.7' to 30': VERY SOFT GRAY SILTY 1 CLAY, TRACE ORGANICS

17.GDT

(DRILLING LOG) MENTOR FINAL COMBINED.GPJ ACE MVD WITH RAPID CPT

MOIST

B00-05 **Boring Designation** INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 2 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 752,600.0 E 2,281,854.0 7.0 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel ELEV DEPTH $N_{\rm f}$ Samp ASTM Class REMARKS Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -25.0 3 23.7' to 30': VERY SOFT GRAY SILTY CLAY, TRACE ORGANICS MOIST (continued) 27.5 -23.0 30.0 2 -30.030' to 44': SOFT TO MEDIUM STIFF 4 GRAY SILTY CLAY W/TRACE **ORGANICS** MOIST 32.5 1 2 3 -35.0 5 -37.5 2 3 4 -40.0 7 -42.5 -37.0 44.0 44' to 45': MEDIUM DENSE GRAY SANDY SILT WITH TRACE ROCK 18 -38.0 45.0 45.0 **FRAGMENTS** 25 WET **45':** BORING TERMINATION DEPTH

Boring Designation B20-01 INSTALLATION DIVISION SHEET **DRILLING LOG** 4 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL State Plane NAD83 LWD Mentor Harbor 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B20-01 N 753,582.0 E 2,281,548.0 CME-550 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED SME 9 2 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 JH/RM 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING DEG FROM BEARING ✓ VERTICAL COMPLETED VERTICAL 15. DATE BORING 9/21/20 9/21/20 INCLINED 16. ELEVATION TOP OF BORING 9.7 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 52.5 JF Geotechnical Engineer Laboratory LEGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel ELEV DEPTH ASTM Class N_{60} Samb REMARKS N_{f} Fines Sand REC Ⅎ ₫ ğ (Description) 0.0 0' to 5.5': Working Platform 2.5 5.0 4.2 5.5 5.5' to 21.5': Lake Water Level 7.5 -10.0 -12.5

B20-01 **Boring Designation** INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 753,582.0 E 2,281,548.0 9.7 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % ELEV Gravel DEPTH ASTM Class REMARKS Sand REC ğ Ⅎ ₫ (Description) -15.0 5.5' to 21.5': Lake Water Level -17.5 -20.0 21.5 -11.8 21.5' to 26': Fine to Medium SAND-1 Trace Silt- Gray- Wet- Very Loose (SP) 1 100 1 0 98 2 SP -22.5 1 1 2 2 -25.0 -16.3 26.0 26' to 36.5': SILTY CLAY with Sand-Gray- Wet- Very Soft (CL-ML) 0 100 2 0 -27.5 25 5 26 0 0 WOH UU Su = 503 PSF 24% FINER THAN 0.005 mm |_30.0 CL-100 3 0 24 24 5 25 Sg = 2.710 0 100 4 -32.5 26 6 26 0 0

Boring Designation B20-01 INSTALLATION SHEET 3 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane **LWD** NAD83 LOCATION COORDINATES **ELEVATION TOP OF BORING** N 753,582.0 E 2,281,548.0 9.7 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel DEPTH Samb I ELEV REMARKS N_f ASTM Class Sand REC Ⅎ Š ₫ (Description) WOF 26' to 36.5': SILTY CLAY with Sand-Gray- Wet- Very Soft (CL-ML) (continued) UU Su = 286 PSF 20% FINER THAN 0.005 mm |_35.0 CL-14 100 5 0 20 4 27 Sg = 2.71-26.8 36.5 36.5' to 38.5': Sandy SILT- Gray- Wet-0 Very Soft (ML) 36 21 3 26 ML 0 17% FINER THAN 0.005 0 100 6 mm -37.5 0 0 WOH -28.8 38.5 38.5' to 43.5': Sandy SILTY CLAY-Gray- Wet- Soft to Medium Stiff (CL-ML) 0 100 0 -40.0 34 21 4 25 0 CL-16% FINER THAN 0.005 3 4 MLmm WOH/12"-3 1 100 8 3 -42.5 3 7 6 -33.8 43.5 43.5' to 46': Silty Medium to Coarse SAND with Gravel- Gray- Wet- Medium Dense (SM) 1 5 33 9 -45.0 14 22 19 -36.3 46.0 46' to 49.5': Sandy LEAN CLAY with Gravel- Reddish Brown and Gray-Damp- Hard (CL) 6 10 55 10 -47.5 15 18 33 28 -39.8 49.5 49.5' to 52.5': Sandy LEAN CLAY with Gravel- Gray- Damp- Hard (CL) -50.0

ACE MVD WITH RAPID CPT 2008 11 17.GDT

1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ

B20-01 **Boring Designation** INSTALLATION SHEET 4 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 753,582.0 E 2,281,548.0 9.7 Laboratory EGEND Blows/ 0.5 ft % REC FIELD CLASSIFICATION OF MATERIALS ELEV DEPTH Gravel N_{60} Samb ASTM Class REMARKS $N_{\rm f}$ Sand Ⅎ $\frac{8}{2}$ ₫ (Description) 49.5' to 52.5': Sandy LEAN CLAY with 30 Gravel- Gray- Damp- Hard (CL) 84 11

14

-52.5

(continued)

50

/6"

-42.8

Boring Designation B20-02 INSTALLATION DIVISION SHEET **DRILLING LOG** 4 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL NAD83 LWD Mentor Harbor State Plane 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B20-02 N 753,387.0 E 2,281,827.0 CME-550 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED SME 10 3 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 JH/RM 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING DEG FROM BEARING ✓ VERTICAL COMPLETED VERTICAL 15. DATE BORING 9/22/20 9/22/20 INCLINED 16. ELEVATION TOP OF BORING 9.7 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 53.0 TPO Geotechnical Engineer Laboratory LEGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel ELEV DEPTH ASTM Class N_{60} Samb REMARKS N_{f} Fines Sand REC Ⅎ ₫ $\frac{8}{2}$ (Description) 0.0 0' to 5.5': Working Platform 2.5 5.0 4.2 5.5 5.5' to 21': Lake Water Level 7.5 -10.0 -12.5

B20-02 **Boring Designation** INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 753,387.0 E 2,281,827.0 9.7 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % ELEV Gravel DEPTH ASTM Class REMARKS Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -15.0 5.5' to 21': Lake Water Level (continued) -17.5 -20.0 -11.3 21.0 21' to 23': Sand and Gravel (Driller's 0 Description) 0 0 0 -22.5 1 1 -13.3 23.0 0 23' to 33.3': SILTY CLAY- Gray- Wet-Very Soft (CL-ML) 0 0 25 2 0 28 0 WOH -25.0 0 100 3 24 4 26 0 0 -27.5 WOH UU Su = 389 PSF 29% FINER THAN 0.005 mm 100 0 5 24 4 25 MLSg = 2.7330.0 UU Su = 452 PSF, 313 PSF 100 5 5 26 -32.5

Boring Designation B20-02 INSTALLATION SHEET 3 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane LWD NAD83 LOCATION COORDINATES **ELEVATION TOP OF BORING** N 753,387.0 E 2,281,827.0 9.7 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel DEPTH ELEV REMARKS N_f ASTM Class Sand REC Ⅎ Š ₫ (Description) <u>-23.6/\ 33.3</u>/ 33.3' to 38': SILTY CLAY with Sand-Gray- Wet- Very Soft (CL-ML) 0 100 6 0 0 29 23 5 29 CL-0 0 ML -35.0 19% FINER THAN 0.005 WOH 0 100 7 0 26 6 29 0 0 -37.5 WOH -28.3 38.0 38' to 40.5': Sandy SILTY CLAY- Gray-Wet- Very Soft (CL-ML) 0 100 8 0 0 38 21 4 25 CL-19% FINER THAN 0.005 0 0 ML 40.0 WOH -30.8 40.5 40.5' to 45.8': SILTY CLAY with Sand-Gray- Wet- Very Soft (CL-ML) 0 0 100 9 15 23 4 27 23% FINER THAN 0.005 0 0 ML mm 42.5 WOH 15% FINER THAN 0.005 CLmm 100 10 4 29 0 46 21 ML-45.0 -36.1 45.8 45.8' to 48': Fine to Coarse SAND-Gray- Wet- Very Loose (SP) 1 1 100 | 11 2 1 -47.5 2 -38.3 48.0 48' to 53': Sandy LEAN CLAY with Gravel- Gray- Damp- Hard (CL) 7 55 12 19 14 39 -50.0 33

	Boring Designati	on B20-02								
DDILLING LOC (Cont Choot)	INSTALLATION	INSTALLATION								
DRILLING LOG (Cont Sheet)			OF 4 SHEETS							
PROJECT	COORDINATE SYSTEM	HORIZONTAL	VERTICAL							
Mentor Harbor	State Plane	NAD83	LWD							
LOCATION COORDINATES	ELEVATION TOP OF BORING	•	•							
N 753 397 0 E 2 291 927 0	0.7									

IN / C	03,307.	U E	2,2	01,0	27.0		9.7										i
ELEV	DEPTH	Blows/ 0.5 ft	N _f	N ₆₀	LEGEND	FIELD CLASSIFICATION OF MATERIALS (Description)	% REC	Samp No.	Gravel	Sand	Fines	ibora ∃	atory =	MC	ASTM Class	REMARKS	
	_	35 45				48' to 53': Sandy LEAN CLAY with Gravel- Gray- Damp- Hard (CL) (continued)	100	13						8		PIECE OF SHALE IN WATER CONTENT SAMPLE	- - -52
-43.3	53.0	50		115													_ 02

95

Boring Designation B20-03 INSTALLATION DIVISION SHEET **DRILLING LOG** 4 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL NAD83 LWD Mentor Harbor State Plane 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B20-03 N 753,198.0 E 2,281,362.0 CME-550 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED SME 13 1 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 JH/RM 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING DEG FROM BEARING ✓ VERTICAL COMPLETED VERTICAL 15. DATE BORING 9/22/20 9/22/20 INCLINED 16. ELEVATION TOP OF BORING 9.7 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 54.5 TPO Geotechnical Engineer Laboratory LEGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel ELEV DEPTH ASTM Class N_{60} Samb REMARKS N_{f} Fines Sand REC Ⅎ ₫ $\frac{8}{2}$ (Description) 0.0 0' to 5.5': Working Platform 2.5 5.0 4.2 5.5 5.5' to 20.5': Lake Water Level 7.5 -10.0 -12.5

B20-03 **Boring Designation** INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane **LWD** NAD83 LOCATION COORDINATES **ELEVATION TOP OF BORING** 9.7 N 753,198.0 E 2,281,362.0 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel DEPTH **ELEV** Samp ASTM Class REMARKS Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -15.0 5.5' to 20.5': Lake Water Level (continued) -17.5 -20.0 -10.8 20.5 20.5' to 24': Fine to Coarse SAND-1 Gray- Wet- Loose (SP) 2 0 1 2 1 5 4 -22.5 -14.3 24.0 24' to 26': LEAN CLAY- Gray- Wet-0 72 2 Very Soft (CL) 29 8 27 0 0 -25.0 WOH -16.3 26.0 26' to 29.5': Fine to Medium SAND-0 Gray- Wet- Very Loose (SP) 0 3 0 0 -27.5 WOH 0 50 4 -19.8 29.5 29.5' to 30.5': SILTY CLAY- Gray-25 | 5 | 27 2 1 Wet- Very Soft (CL-ML) -30.0 2 -20.8 30.5 30.5' to 34': Fine to Medium Sand with Silt- Gray- Wet- Very Loose (SP-SM) 0 5 0 0 0 32.5 WOH

Boring Designation B20-03 INSTALLATION SHEET 3 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane **LWD** NAD83 LOCATION COORDINATES **ELEVATION TOP OF BORING** N 753,198.0 E 2,281,362.0 9.7 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS Gravel DEPTH **ELEV** REMARKS N_f N_{60} ASTM Class Sand REC Ⅎ Š ₫ (Description) 30.5' to 34': Fine to Medium Sand with Silt- Gray- Wet- Very Loose (SP-SM) 2 -24.3 34.0 (continued) 34' to 40': SILTY CLAY- Gray- Wet-67 6 Very Soft (CL-ML) 25 5 28 2 1 -35.0 2 0 100 7 0 25 6 27 0 0 -37.5 WOH 0 100 8 0 23 5 28 0 -30.3 40.0 -40.0 40' to 43.5': Sandy SILT- Gray- Wet-WOH Very Soft (ML) 21% FINER THAN 0.005 0 26 ML mm 100 9 33 20 3 -42.5 -33.8 43.5 43.5' to 46': Sandy SILTY CLAY- Gray-Wet- Very Soft (CL-ML) 0 n 100 10 45.0 0 37 21 4 26 CL-19% FINER THAN 0.005 1 1 MI -36.3 46.0 46' to 48.5': Sandy LEAN CLAY- Gray-Wet- Very Soft (CL) 0 100 11 0 -47.5 1 33 30 8 39 CL 24% FINER THAN 0.005 0 0 4.3% ORGANIC CONTENT WOH -38.8 48.5 48.5' to 51.5': Fine to Coarse SAND 5 with Gravel- Gray- Wet- Medium Dense (SP) 100 12 7 10 20 -50.0 17

ACE MVD WITH RAPID CPT 2008 11 17.GDT

1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ

Boring Designation B20-03

DRILLING LOG (Cont Sheet)						II.	ISTALI	LATIO	NC	SHE		4 SHEETS									
PROJECT						c	OORD	INAT	E SY	′STE	M	ONTAL	VERTICAL								
Mentor Harbor							State	e Pl	ane		AD83	LWD									
LOCATION COORDINATES						E	ELEVATION TOP OF BORING													1	
N 75	53,198.	0 E	2,2	81,3	62.0			9.7													
		rs/			9	FIELD OF ACCIETOATION OF MATER	DIALC		Š			La	abora	atory						1	
ELEV	DEPTH	를 O	N _f	N ₆₀	LEGEND	FIELD CLASSIFICATION OF MATE (Description)	:RIALS	% REC	Samp	Gravel	Sand	Fines	Ⅎ	ਾ	MC	ASTM Class		REMA			
\-41.8/	₹51.5 /					51.5' to 54.5' : Sandy LEAN CLAN Gravel- Gray- Hard (CL)	/ with	100	13												<u> </u>
		\ <u>/6"</u> /	50			Graver Gray Fland (GE)									12						_
			/6"																		
		32																			L
	_	21						89	14						10						-
-44.8	54.5	33		63											13						1
			54																		1

Boring Designation B20-04 INSTALLATION DIVISION SHEET **DRILLING LOG** 4 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL State Plane NAD83 LWD Mentor Harbor 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B20-04 N 753,095.0 E 2,281,619.0 CME-550 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED SME 13 2 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 JH/RM 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING DEG FROM BEARING ✓ VERTICAL COMPLETED VERTICAL 15. DATE BORING 9/24/20 9/24/20 INCLINED 16. ELEVATION TOP OF BORING 9.7 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 55.0 JF Geotechnical Engineer Laboratory LEGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel ELEV DEPTH ASTM Class N_{60} Samb REMARKS N_{f} Fines Sand REC Ⅎ ₫ ğ (Description) 0.0 0' to 5.5': Working Platform 2.5 5.0 4.2 5.5 5.5' to 16.5': Lake Water Level 7.5 -10.0 -12.5

Boring Designation B20-04 INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane **LWD** NAD83 LOCATION COORDINATES **ELEVATION TOP OF BORING** N 753,095.0 E 2,281,619.0 9.7 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel **ELEV** DEPTH ASTM Class REMARKS Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -15.0 5.5' to 16.5': Lake Water Level (continued) -6.8 16.5 16.5' to 20.5': Fine SAND- Trace Silt-Brown and Gray- Wet- Loose (SP) 2 100 | 1 0 95 5 SP -17.5 2 4 5 1 100 2 2 6 -20.0 5 -10.8 20.5 20.5' to 24.5': Fine to Medium SAND-Trace Silt- Brown and Gray- Wet-Medium Dense (SP) 5 95 3 9 11 23 -22.5 20 100 3 4 -14.8 24.5 29 7 26 24.5' to 28.5': LEAN CLAY- Trace 2 6 Sand- Gray- Wet- Very Soft (CL) -25.0 5 UU Su = 888 PSF, 704 PSF 100 5 29 8 28 27.5 -18.8 28.5 28.5' to 43': SILTY CLAY- Trace Sand-0 Gray- Wet- Very Soft (CL-ML) 0 100 6 27 | 6 | 31 0 0 -30.0 WOH 0 100 7 0 26 6 27 0 -32.5 WOH

Boring Designation B20-04 INSTALLATION SHEET 3 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** 9.7 N 753,095.0 E 2,281,619.0 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % ELEV Gravel DEPTH REMARKS ASTM Class Sand REC Š Ⅎ ₫ (Description) 28.5' to 43': SILTY CLAY- Trace Sand-Gray- Wet- Very Soft (CL-ML) (continued) UU Su = 748 PSF CL-26% FINER THAN 0.005 mm 100 8 0 3 25 5 26 MLSg = 2.73-35.0 0 100 9 0 25 6 27 0 0 -37.5 WOH 0 100 10 0 24 5 26 0 0 -40.0 WOH 0 0 95 11 20 24 5 25 25% FINER THAN 0.005 0 0 ML mm -42.5 WOH -33.3 43.0 43' to 45.5': SILTY CLAYEY SAND-Gray- Wet- Very Soft (SC-SM) 0 0 100 | 12 1 52 22 5 22 SC-14% FINER THAN 0.005 0 0 SM mm -45.0 WOH -35.8 45.5 45.5' to 52': Fine to Coarse SILTY SAND with Gravel- Gray- Wet- Medium Dense (SM) 5 9 55 13 22 10 -47.5 19 13 10 72 14 13 27 -50.0 23

Boring Designation B20-04 INSTALLATION SHEET 4 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 753,095.0 E 2,281,619.0 9.7 Laboratory EGEND Blows/ 0.5 ft % REC FIELD CLASSIFICATION OF MATERIALS Gravel DEPTH ELEV ASTM Class REMARKS $N_{\rm f}$ Samp Sand Ⅎ ğ ₫ (Description) -42.3 52.0 52' to 55': Sandy SILTY CLAY with Gravel- Brown and Gray- Moist- Hard -52.5 (CL/ML)

67 | 15

-55.0

34

7 13

16

55.0

-45.3

Boring Designation B20-05 INSTALLATION DIVISION SHEET **DRILLING LOG** 4 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL NAD83 LWD Mentor Harbor State Plane 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL N 752,795.0 E 2,281,852.0 B20-05 CME-550 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED SME 14 2 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 JH/RM 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING DEG FROM BEARING ✓ VERTICAL COMPLETED VERTICAL 15. DATE BORING 9/25/20 9/25/20 INCLINED 16. ELEVATION TOP OF BORING 9.7 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 54.0 TPO Geotechnical Engineer Laboratory LEGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel ELEV DEPTH ASTM Class N_{60} Samb REMARKS N_{f} Fines Sand REC Ⅎ ₫ $\frac{8}{2}$ (Description) 0.0 0' to 5.5': Working Platform 2.5 5.0 4.2 5.5 5.5' to 16.5': Lake Water Level 7.5 -10.0 -12.5

Boring Designation B20-05 INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane **LWD** NAD83 LOCATION COORDINATES **ELEVATION TOP OF BORING** N 752,795.0 E 2,281,852.0 9.7 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel DEPTH **ELEV** REMARKS ASTM Class Sand REC Ⅎ Š ₫ (Description) -15.0 5.5' to 16.5': Lake Water Level (continued) -6.8 16.5 16.5' to 18': Fine to Medium SAND-1 Trace Gravel- Gray- Wet- Loose (SP) 2 33 1 -17.55 2 -8.3 18.0 18' to 21.5': Fine SILTY SAND- Gray-4 Wet- Medium Dense (SM) 2 100 2 4 8 14 -20.0 12 2 21.5 -11.8 21.5' to 23': LEAN CLAY with Sand-100 3 2 Brown and Gray- Wet- Soft (CL) 29 8 24 2 5 22.5 4 -13.3 23.0 23' to 25.5': SILTY CLAY- Gray- Wet-Soft (CL-ML) Sand Seam from 23.5' -23.75' 5 24 84 24 25.0 UU Su = 875 PSF -15.8 25.5 25.5' to 28': LEAN CLAY with Sand-Brown and Gray- Wet- Soft (CL) 0 0 100 5 29 9 32 2.4% ORGANIC CONTENT 0 0 -27.5WOH -18.3 28.0 28' to 47': SILTY CLAY- Gray- Wet-Very Soft (CL-ML) 0 100 6 25 | 5 | 27 0 0 -30.0 WOH 0 7 0 0 0 32.5 WOH

Boring Designation B20-05 INSTALLATION SHEET 3 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 752,795.0 E 2,281,852.0 9.7 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel DEPTH ELEV ASTM Class REMARKS Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) 28' to 47': SILTY CLAY- Gray- Wet-Very Soft (CL-ML) (continued) 0 0 100 8 23 5 26 0 0 -35.0 WOH UU Su = 587 PSF, 531 PSF 100 9 23 | 5 | 27 -37.5 0 0 100 10 26 7 26 0 0 -40.0 WOH 0 0 100 11 26 7 24 0 0 -42.5 WOH 0 100 | 12 26 7 25 0 0 -45.0 WOH 1 100 13 -37.3 47.0 47' to 50.5': Sandy LEAN CLAY with 6 1 Gravel- Gray- Moist- Stiff (CL) -47.5 5 7 67 5 14 4 11 -50.0 -40.8 50.5 50.5' to 53': Sandy LEAN CLAY with Rock Fragments- Gray- Hard (CL)

Boring Designation B20-05 INSTALLATION SHEET 4 **DRILLING LOG (Cont Sheet)** 4 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 752,795.0 E 2,281,852.0 9.7 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel DEPTH ELEV ASTM Class REMARKS $N_{\rm f}$ Samp N_{60} Sand REC Ⅎ ğ ₫ (Description) 19 50.5' to 53': Sandy LEAN CLAY with 95 15 Rock Fragments- Gray- Hard (CL) (continued) 51 -52.5 44 53.0 -43.3 53' to 54': SHALE- Gray- Soft 50 100 16 -44.3 54.0 /6"

ACE 1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ ACE MVD WITH RAPID CPT 2008_11_17.GDT 1228/20

Boring Designation B20-06 INSTALLATION DIVISION SHEET **DRILLING LOG** 3 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL NAD83 LWD Mentor Harbor State Plane 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL B20-06 N 752,616.0 E 2,282,105.0 CME-550 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED SME 11 1 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 JH/RM 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING DEG FROM BEARING ✓ VERTICAL COMPLETED VERTICAL 15. DATE BORING 9/23/20 9/23/20 INCLINED 16. ELEVATION TOP OF BORING 9.7 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 47.5 TPO Geotechnical Engineer Laboratory LEGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel ELEV DEPTH ASTM Class N_{60} Samb REMARKS N_{f} Fines Sand REC Ⅎ ₫ $\frac{8}{2}$ (Description) 0.0 0' to 5.5': Working Platform 2.5 5.0 4.2 5.5 5.5' to 18': Lake Water Level 7.5 -10.0 -12.5

B20-06 **Boring Designation** INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** OF 3 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane **LWD** NAD83 LOCATION COORDINATES **ELEVATION TOP OF BORING** N 752,616.0 E 2,282,105.0 9.7 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel DEPTH **ELEV** Samp ASTM Class REMARKS Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -15.0 5.5' to 18': Lake Water Level (continued) -17.5 -8.3 18.0 18' to 25.5': Fine to Coarse SAND and 1 GRAVEL- Gray- Wet- Very Loose (SP/GP) 2 17 1 1 1 3 -20.0 0 0 0 2 0 0 -22.5 WOH 0 1 55 3 2 4 -25.0 3 -15.8 25.5 25.5' to 39': Fine to Medium SAND with Silt- Gray- Wet- Very Loose (SP) 0 0 22 4 0 0 -27.5 WOH 0 100 0 5 2 2 -30.0 2 0 100 6 2 4 32.5 3

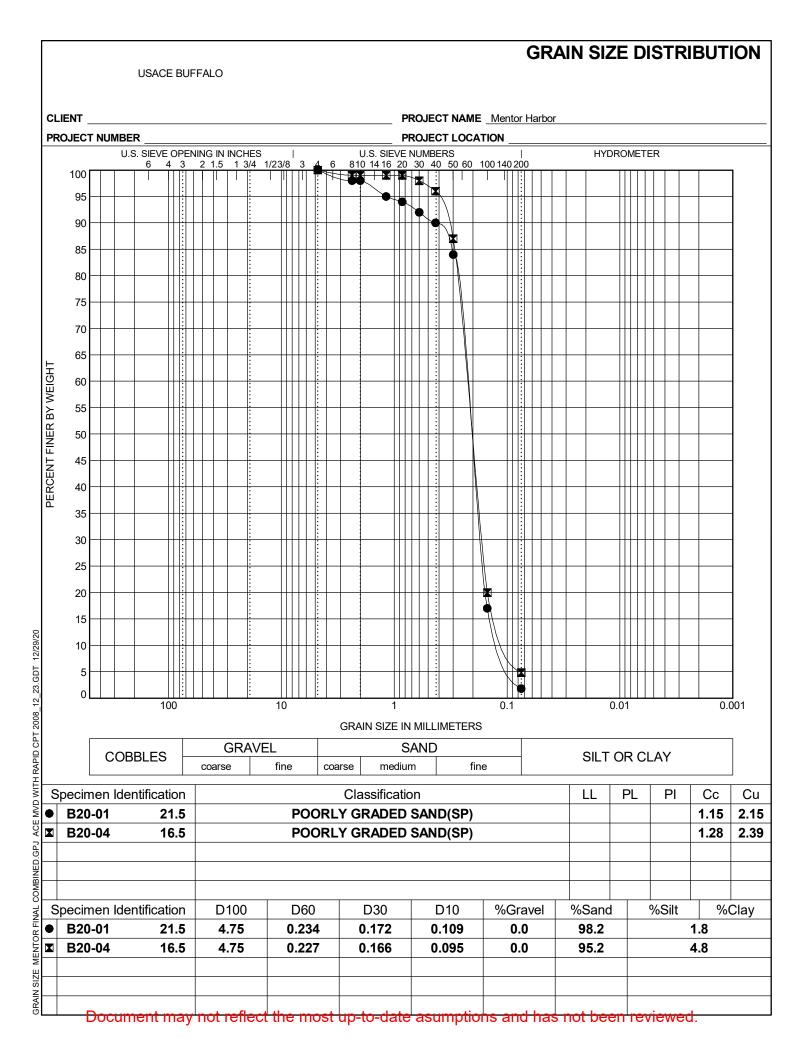
B20-06 **Boring Designation** INSTALLATION SHEET 3 **DRILLING LOG (Cont Sheet)** 3 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** 9.7 N 752,616.0 E 2,282,105.0 Laboratory Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % ELEV DEPTH Gravel ASTM Class REMARKS N_{f} Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) 25.5' to 39': Fine to Medium SAND with Silt- Gray- Wet- Very Loose (SP) 0 (continued) 100 7 0 0 0 -35.0 WOH 0 100 8 0 24 0 0 -37.5 WOH -29.3 39.0 39' to 41': SILTY CLAY- Gray- Moist-27% FINER THAN 0.005 Soft (CL-ML) 84 9 0 11 24 5 22 ML-40.0 4 -31.3 41.0 41' to 47.5': Sandy LEAN CLAY with 100 10 Gravel- Gray- Very Stiff to Hard (CL) 14 10 19 16 -42.5 14 22 89 11 12 41 74 63 -45.0 28 31 72 12 12 50 95 -37.8 47.5 -47.5 81

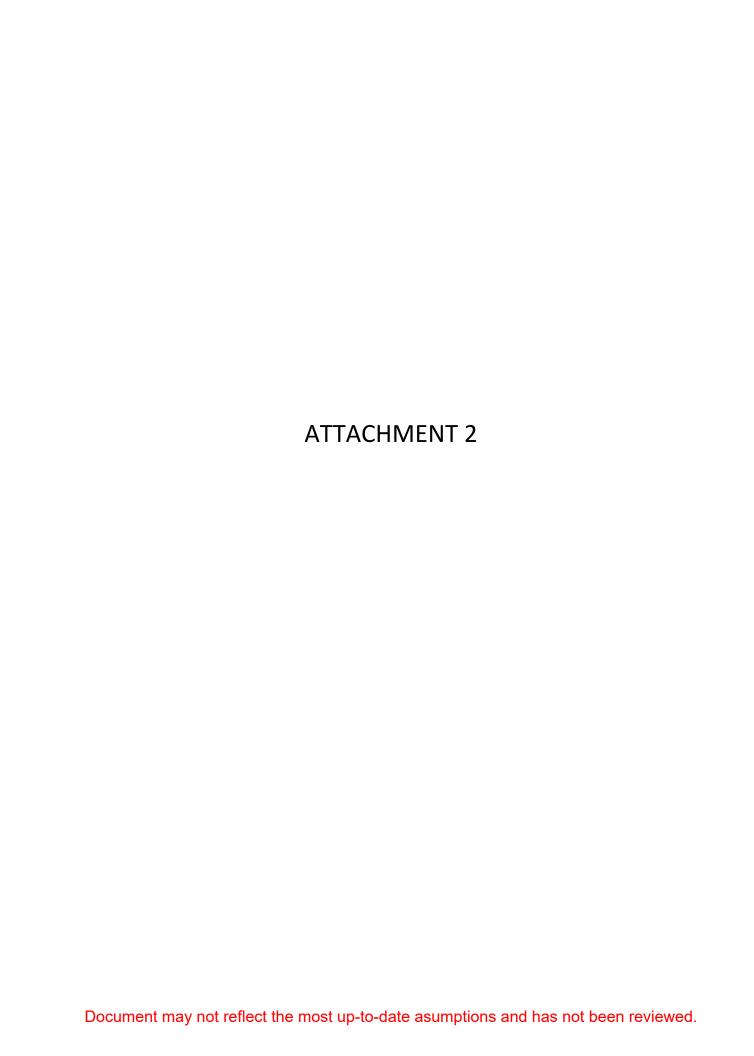
Boring Designation D85-01 INSTALLATION DIVISION SHEET **DRILLING LOG** 2 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL NAD83 LWD Mentor Harbor State Plane 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL D85-01 N 750,766.0 E 2,279,172.0 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED 0 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING VERTICAL DEG FROM BEARING COMPLETED VERTICAL 15. DATE BORING 10/22/85] INCLINED 16. ELEVATION TOP OF BORING -5.0 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 24.5 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel DEPTH **ELEV** Samp REMARKS N_{f} N_{60} Fines ASTM Class Sand REC Ⅎ ₫ ğ (Description) 0.0 -5.2 0.2 0' to 0.2': GRAVEL 0.2' to 1': SAND -6.0 1.0 1' to 2': SILTY CLAY -7.0 2.0 2' to 16': PEAT, SOFT N-VALUES 1 TO 4 2.5 5.0 7.5 -10.0-12.5

D85-01 **Boring Designation** INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** 2 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 750,766.0 E 2,279,172.0 -5.0 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % Gravel ELEV DEPTH ASTM Class $N_{\rm f}$ Samp REMARKS N_{60} Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -15.0 2' to 16': PEAT, SOFT N-VALUES 1 TO 4 (continued) -21.0 16.0 16' to 24.5': SAND, TRACE GRAVEL, SOME ORGANICS IN THIN LENSES, SOME LAYERS OF SILTY CLAY -17.5 -20.0 -22.5 -29.5 24.5 24.5': BORING TERMINATED

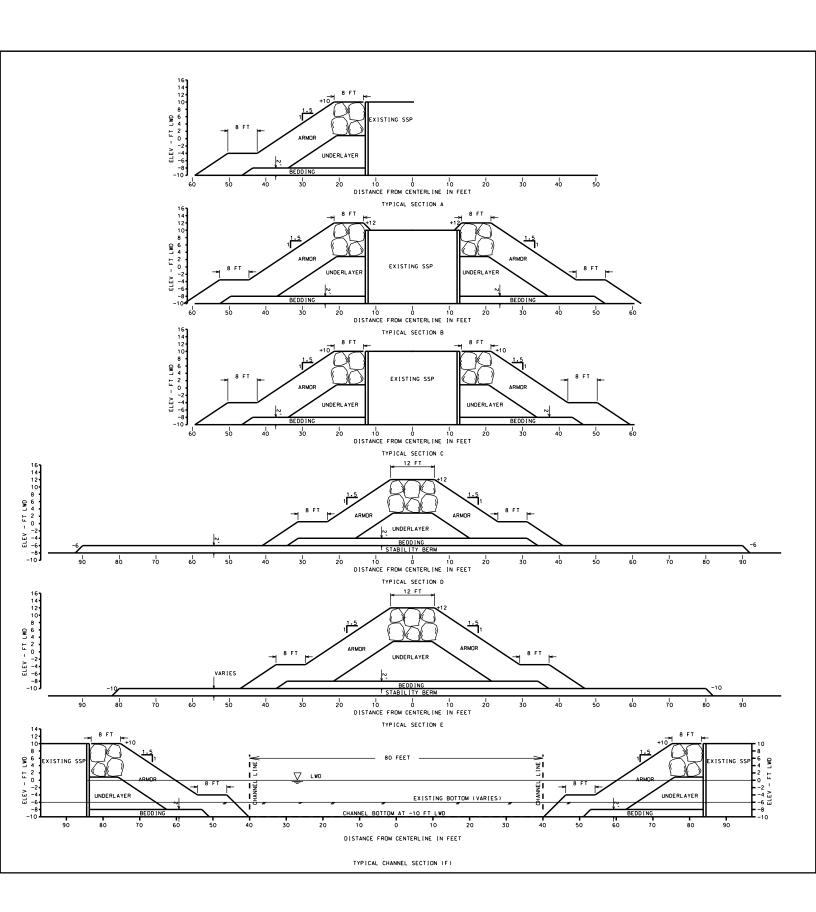
Boring Designation DUV85-02 INSTALLATION DIVISION SHEET **DRILLING LOG** of 2 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL NAD83 LWD Mentor Harbor State Plane 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL DUV85-02 N 750,603.0 E 2,278,883.0 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED 0 0 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING VERTICAL DEG FROM BEARING COMPLETED VERTICAL 15. DATE BORING 10/22/85] INCLINED 16. ELEVATION TOP OF BORING -5.0 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 24.5 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS Gravel ELEV DEPTH ASTM Class Samp REMARKS N_{f} N_{60} Fines Sand REC Ⅎ ₫ ğ (Description) 0.0 0' to 1': SAND -6.0 1.0 1' to 13.5': PEAT, SOFT TO VERY SOFT N-VALUES WOH TO 2 2.5 5.0 7.5 -10.0 -12.5 -18.5 13.5 13.5' to 17': SILTY CLAY, VERY SOFT N-VALUE 2

DUV85-02 **Boring Designation** INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** of 2 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 750,603.0 E 2,278,883.0 -5.0 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % ELEV Gravel DEPTH $N_{\rm f}$ Samp ASTM Class REMARKS N_{60} Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -15.0 13.5' to 17': SILTY CLAY, VERY SOFT N-VALUE 2 (continued) -22.0 17.0 17' to 23.5': MEDIUM TO FINE SAND, TRACE GRAVEL, SOME ORGANICS -17.5 -20.0 -22.5 -28.5 23.5 23.5' to 24.5': SILTY CLAY, SOME GRAVEL, MEDIUM STIFF TO STIFF CL-ML -29.5 24.5 24.5': BORING TERMINATED

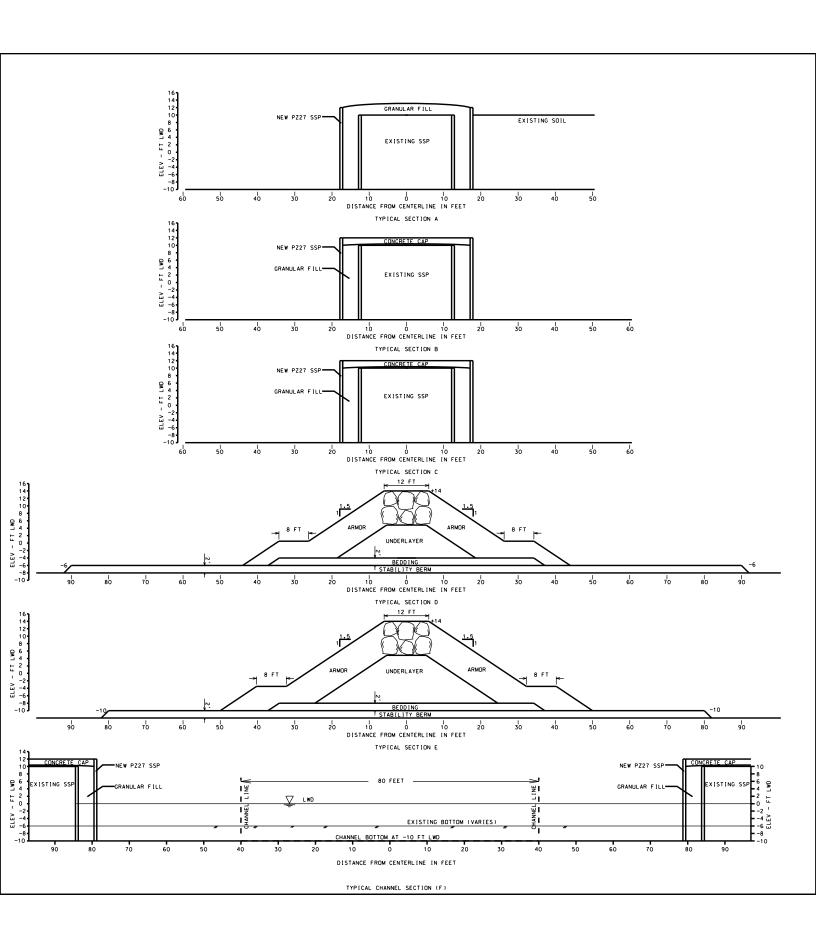

ACE 1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ ACE MVD WITH RAPID CPT 2008_11_17.GDT

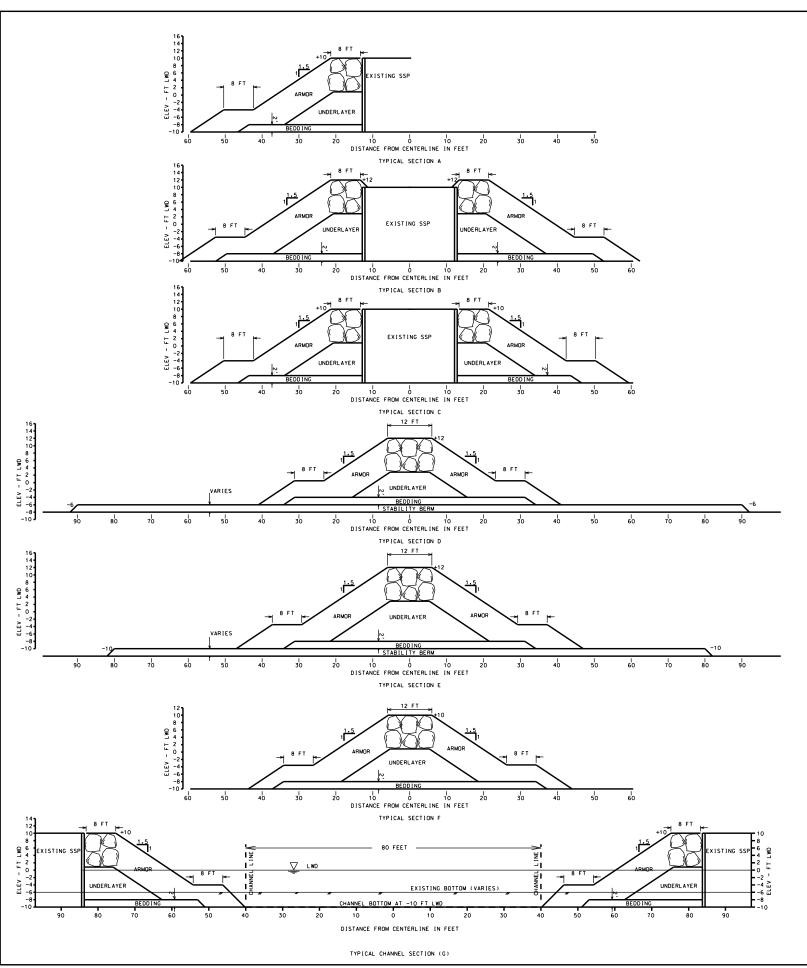

Boring Designation DUV85-03 INSTALLATION DIVISION SHEET **DRILLING LOG** 2 SHEETS 1. PROJECT 9. COORDINATE SYSTEM HORIZONTAL VERTICAL NAD83 LWD Mentor Harbor State Plane 10. SIZE AND TYPE OF BIT 2. HOLE NUMBER : LOCATION COORDINATES 11. MANUFACTURER'S DESIGNATION OF DRILL DUV85-03 N 750,435.0 E 2,278,629.0 3. DRILLING AGENCY 12. TOTAL SAMPLES DISTURBED UNDISTURBED 0 0 4. NAME OF DRILLER 13. TOTAL NUMBER CORE BOXES 0 14. ELEVATION GROUND WATER 5. DIRECTION OF BORING VERTICAL DEG FROM BEARING COMPLETED VERTICAL 15. DATE BORING 10/23/85] INCLINED 16. ELEVATION TOP OF BORING -4.5 6. THICKNESS OF OVERBURDEN 17. TOTAL CORE RECOVERY FOR BORING N/A 7. DEPTH DRILLED INTO ROCK 18. SIGNATURE AND TITLE OF INSPECTOR 8. TOTAL DEPTH OF BORING 24.0 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS Gravel ELEV DEPTH ASTM Class Samb REMARKS N_f N_{60} Fines Sand REC Ⅎ ₫ ğ (Description) 0.0 0' to 2': SAND, COARSE TO FINE, SOME GRAVEL -6.5 2.0 2' to 20': PEAT N-VALUES AS LOW AS 1 2.5 5.0 7.5 -10.0-12.5

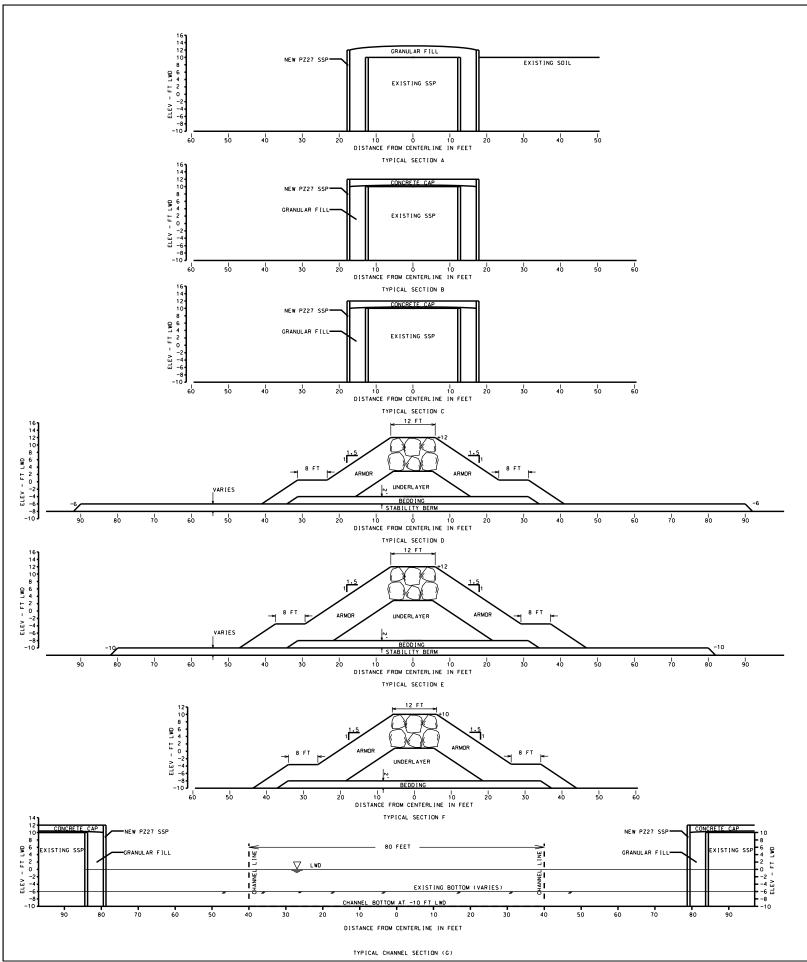
1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ ACE MVD WITH RAPID CPT 2008 11 17.GDT

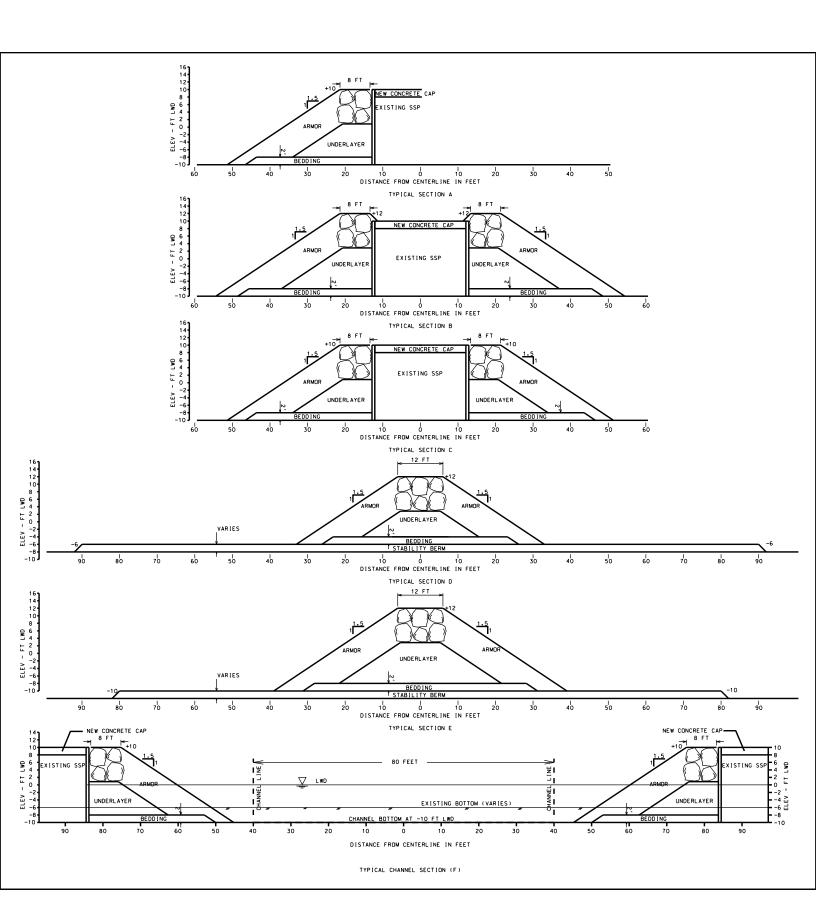

Boring Designation DUV85-03 INSTALLATION SHEET 2 **DRILLING LOG (Cont Sheet)** of 2 SHEETS PROJECT COORDINATE SYSTEM HORIZONTAL VERTICAL Mentor Harbor State Plane NAD83 LWD LOCATION COORDINATES **ELEVATION TOP OF BORING** N 750,435.0 E 2,278,629.0 -4.5 Laboratory EGEND Blows/ 0.5 ft FIELD CLASSIFICATION OF MATERIALS % DEPTH Gravel ELEV $N_{\rm f}$ Samp ASTM Class REMARKS N_{60} Sand REC $\frac{8}{2}$ Ⅎ ₫ (Description) -15.0 2' to 20': PEAT N-VALUES AS LOW AS 1 (continued) -17.5 -24.5 20.0 -20.0 20' to 21': CLAY, SOME SILT, SOFT, MOIST, DAMP, GRAY -25.5 21.0 21' to 23': SAND -22.5 -27.5 23.0 23' to 24': SILTY CLAY WITH GRAVEL, STIFF TO HARD -28.5 24.0 24': BORING TERMINATED

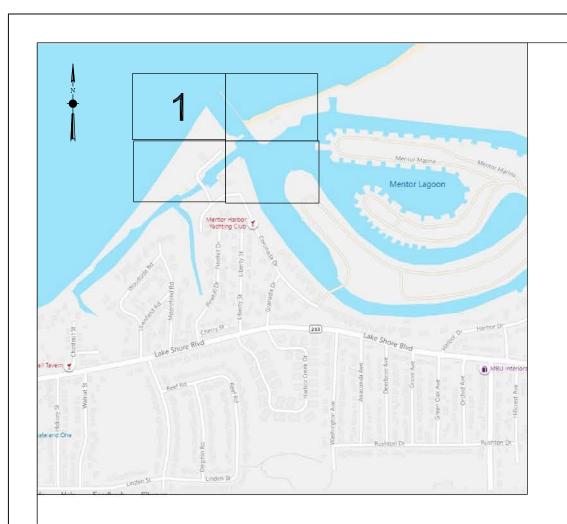
ACE 1836-A (DRILLING LOG) MENTOR FINAL COMBINED.GPJ ACE MVD WITH RAPID CPT 2008_11_17.GDT



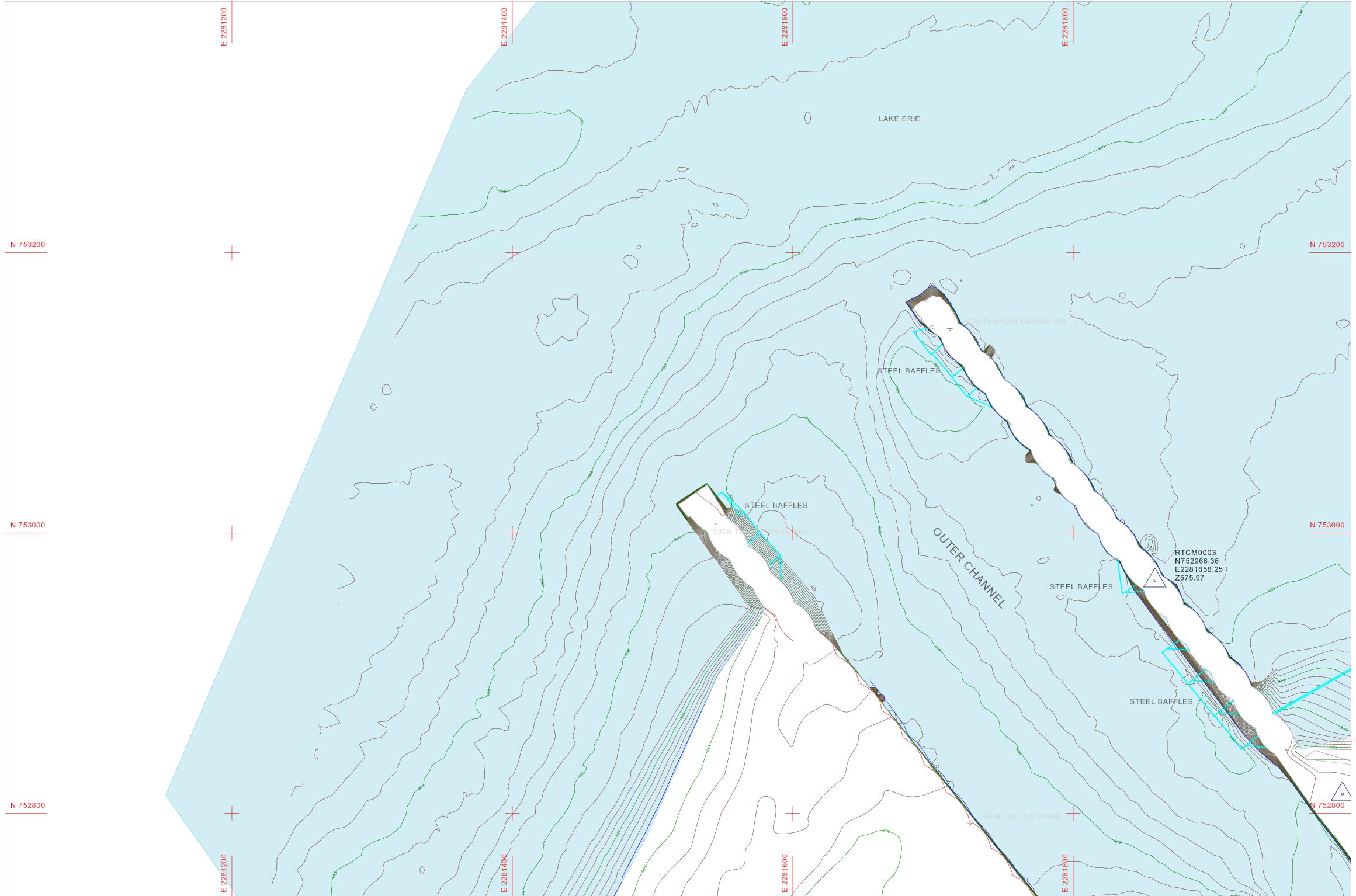


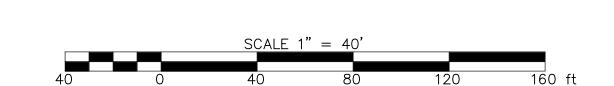


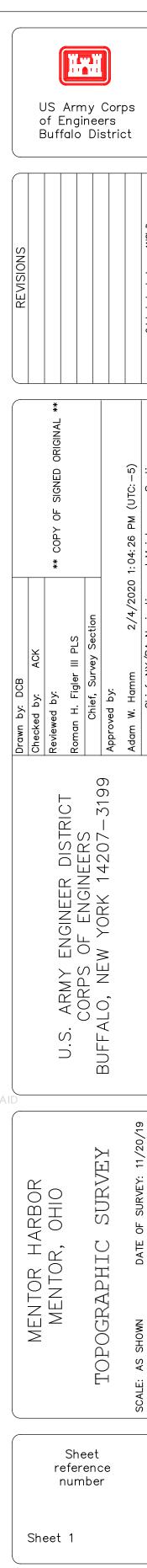

Document may not reflect the most up-to-date asumptions and has not been reviewed.

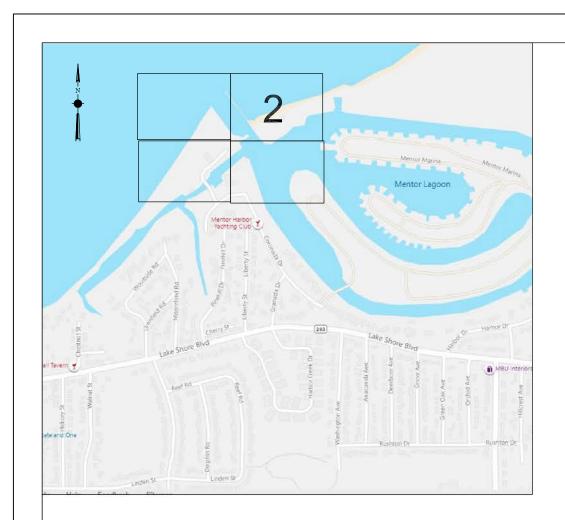


Document may not reflect the most up-to-date asumptions and has not been reviewed.

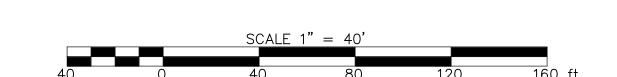




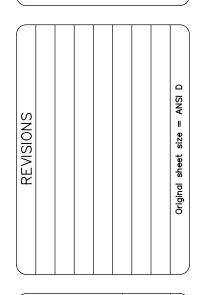

VICINITY MAP
(NOT TO SCALE)

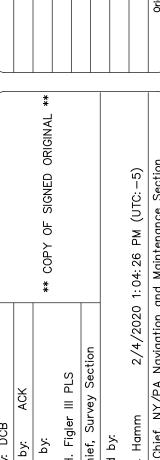

LEGEND	OF SYMBOLS
8	BORE HOLE
	BOLLARD
	BOULDER
Φ	BUSH
СВ	CATCH BASIN
6	CLEAT
*	CONIFEROUS TREE
	DECIDUOUS TREE
E	ELECTRIC BOX
+	GUY ANCHOR
\Box	HYDRANT
	LIFT GATE
X -0	LIGHT POLE
MW	MONITORING WELL
	PIPE INVERT
0	POST
S	SANITARY MANHOLE
	SIGN
642.6	SOUNDING
636.4	SPOT ELEVATION
(5)	STORM MANHOLE
	SURVEY CONTROL POINT
	TELEPHONE MANHOLE
Q	UTILITY POLE
	WATER VALVE
PL	PROPERTY LINE
	BOTTOM OF BANK/ DITCH
	FENCE LINE
	GRADE BREAK LINE
	GUARD RAIL
	MAJOR CONTOUR
	MINOR CONTOUR
———Е———	OVERHEAD WIRE
	RAILROAD TRACK
	TOP OF BANK/DITCH

- 1. CONTOURS AND SOUNDINGS ARE U.S. SURVEY FEET REFERRED TO VERTICAL DATUM OF IGLD 1985.
- HORIZONTAL COORDINATES ARE U.S. SURVEY FEET REFERRED TO NAD 1983 (Conus) United States/State Plane 1983—Ohio North 3401.
- 3. THE TOPOGRAPHIC INFORMATION DEPICTED ON THE MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATE INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITION AT THAT TIME.
- 4. THIS SURVEY WAS PREPARED IN ACCORDANCE WITH THE STANDARDS OUTLINED IN CORPS OF ENGINEERS HYDROGRAPHIC SURVEY MANUAL EM 1110-2-1003 AND CORPS OF ENGINEERS CONTROL AND TOPOGRAPHIC SURVEY MANUAL EM 1110-1-1005.
- 5. UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE AND SHOULD NOT BE RELIED ON FOR EXCAVATION WORK. CONTACT "811 CALL BEFORE YOU DIG" PRIOR TO ANY EXCAVATION WORK.
- 6. SUBMERGED SHEETPILE WALL SHOWN ALONG LAKESIDE BEACH ON EASTERLY SIDE OF OUTER CHANNEL WAS LOCATED USING STATE OF OHIO GEOGRAPHICALLY REFERENCED ORTHOPHOTOS ONLY NO SURVEY DATA COULD BE OBTAINED.

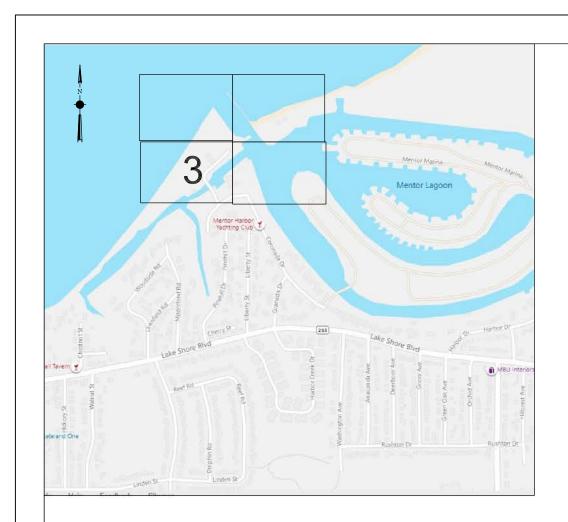


VICINITY MAP
(NOT TO SCALE)

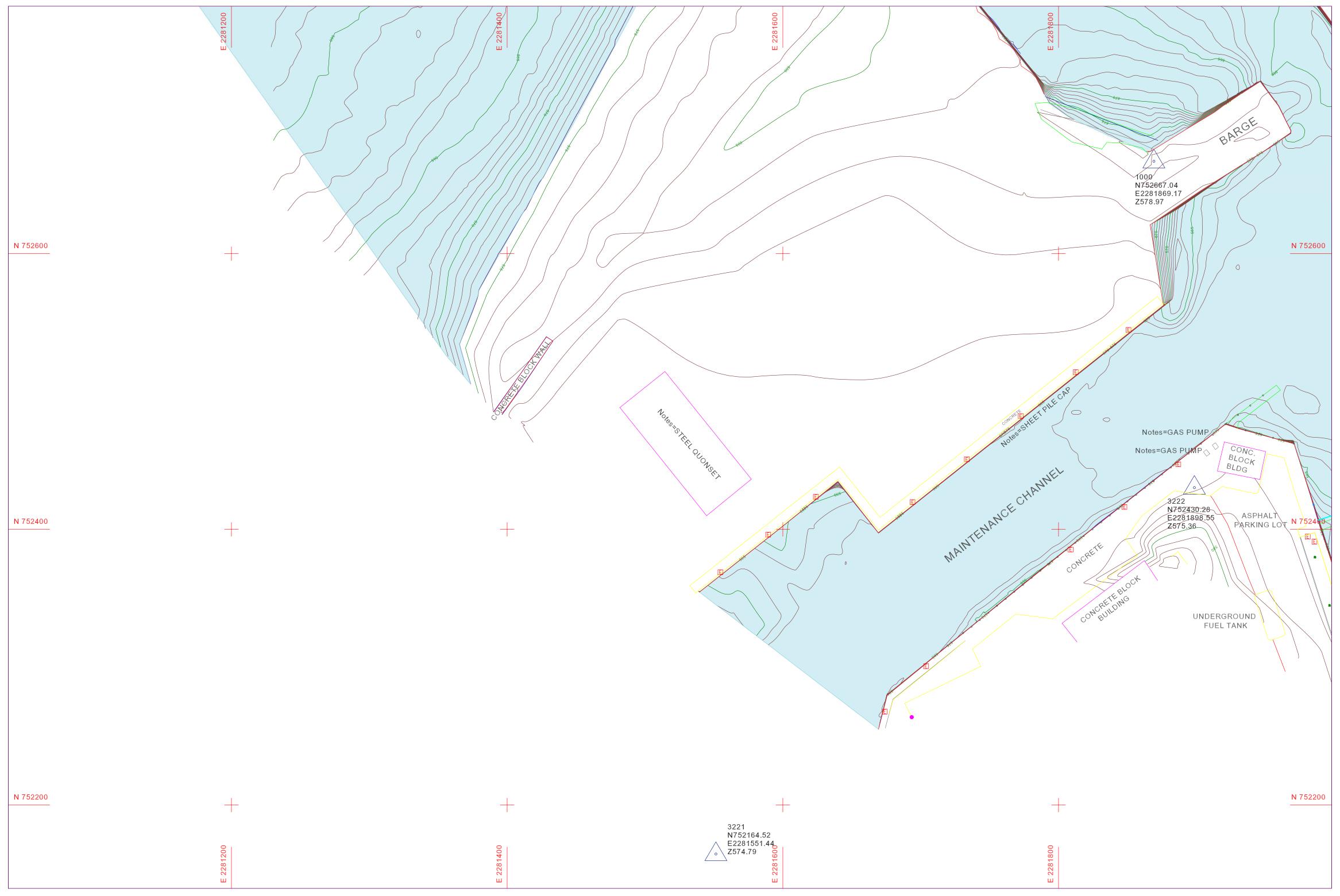

LEGEND (OF SYMBOLS
\otimes	BORE HOLE
	BOLLARD
	BOULDER
Φ	BUSH
СВ	CATCH BASIN
8	CLEAT
*	CONIFEROUS TREE
	DECIDUOUS TREE
E	ELECTRIC BOX
+	GUY ANCHOR
\Box	HYDRANT
	LIFT GATE
<u> </u>	LIGHT POLE
(MW)	MONITORING WELL
	PIPE INVERT
0	POST
<u>S</u>	SANITARY MANHOLE
	SIGN
642.6	SOUNDING
636.4	SPOT ELEVATION
<u>(1)</u>	STORM MANHOLE
	SURVEY CONTROL POINT
	TELEPHONE MANHOLE
0	UTILITY POLE
W	WATER VALVE
PL	PROPERTY LINE
	BOTTOM OF BANK/ DITCH
	FENCE LINE
	GRADE BREAK LINE
	GUARD RAIL
<u> </u>	MAJOR CONTOUR
	MINOR CONTOUR
E	OVERHEAD WIRE
	RAILROAD TRACK
	TOP OF BANK/DITCH



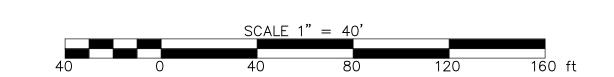
- 1. CONTOURS AND SOUNDINGS ARE U.S. SURVEY FEET REFERRED TO VERTICAL DATUM OF IGLD 1985.
- HORIZONTAL COORDINATES ARE U.S. SURVEY FEET REFERRED TO NAD 1983 (Conus) United States/State Plane 1983—Ohio North 3401.
- 3. THE TOPOGRAPHIC INFORMATION DEPICTED ON THE MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATE INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITION AT THAT TIME.
- 4. THIS SURVEY WAS PREPARED IN ACCORDANCE WITH THE STANDARDS OUTLINED IN CORPS OF ENGINEERS HYDROGRAPHIC SURVEY MANUAL EM 1110-2-1003 AND CORPS OF ENGINEERS CONTROL AND TOPOGRAPHIC SURVEY MANUAL EM 1110-1-1005.
- 5. UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE AND SHOULD NOT BE RELIED ON FOR EXCAVATION WORK. CONTACT "811 CALL BEFORE YOU DIG" PRIOR TO ANY EXCAVATION WORK.
- 6. SUBMERGED SHEETPILE WALL SHOWN ALONG LAKESIDE BEACH ON EASTERLY SIDE OF OUTER CHANNEL WAS LOCATED USING STATE OF OHIO GEOGRAPHICALLY REFERENCED ORTHOPHOTOS ONLY NO SURVEY DATA COULD BE OBTAINED.



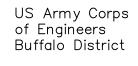
U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS BUFFALO, NEW YORK 14207—3199

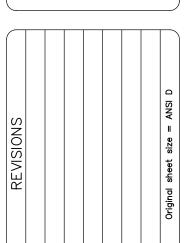

MENTOR HARBOR MENTOR, OHIO TOPOGRAPHIC SURVEY

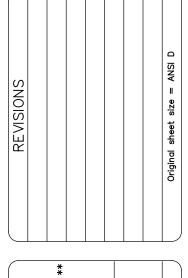
Sheet reference number Sheet 2

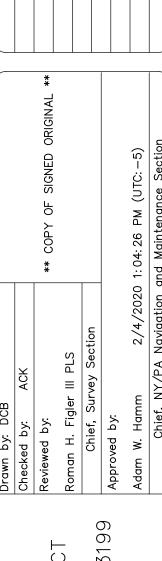


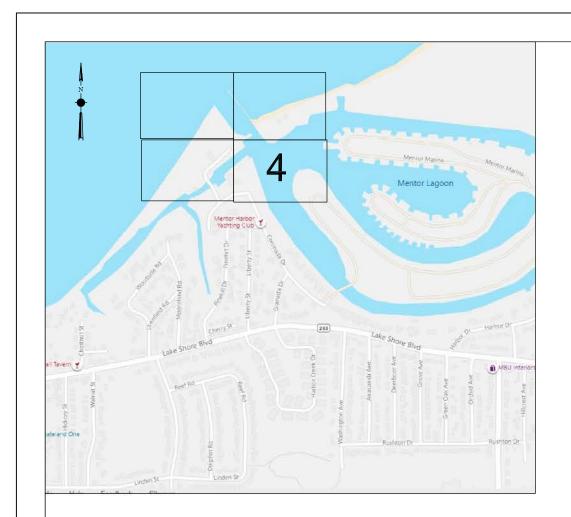
VICINITY MAP (NOT TO SCALE)


L EQEND (
LEGEND (OF SYMBOLS
8	BORE HOLE
	BOLLARD
	BOULDER
Ø	BUSH
СВ	CATCH BASIN
9	CLEAT
₩	CONIFEROUS TREE
\mathfrak{L}	DECIDUOUS TREE
E	ELECTRIC BOX
+	GUY ANCHOR
\Box	HYDRANT
	LIFT GATE
<u> </u>	LIGHT POLE
(MW)	MONITORING WELL
	PIPE INVERT
0	POST
<u>\$</u>	SANITARY MANHOLE
	SIGN
642.6	SOUNDING
636.4	SPOT ELEVATION
<u>(1)</u>	STORM MANHOLE
	SURVEY CONTROL POINT
	TELEPHONE MANHOLE
0	UTILITY POLE
\square	WATER VALVE
PL	PROPERTY LINE
	BOTTOM OF BANK / DITCH
	FENCE LINE
	GRADE BREAK LINE
	GUARD RAIL
<u> </u>	MAJOR CONTOUR
	MINOR CONTOUR
E	OVERHEAD WIRE
	RAILROAD TRACK
	TOP OF BANK/DITCH

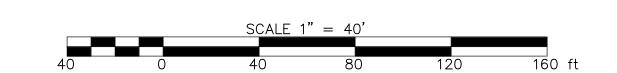


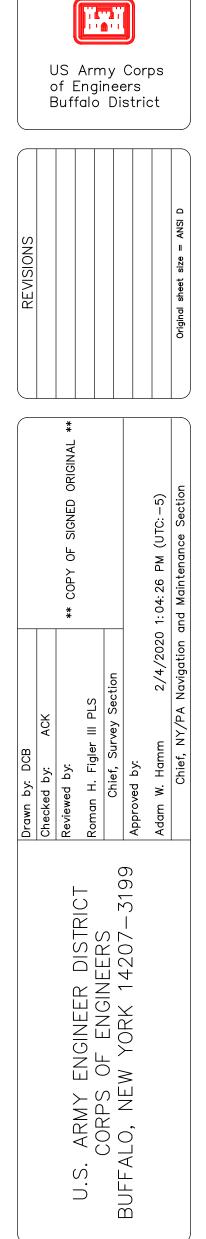

- 1. CONTOURS AND SOUNDINGS ARE U.S. SURVEY FEET REFERRED TO VERTICAL DATUM OF IGLD 1985.
- HORIZONTAL COORDINATES ARE U.S. SURVEY FEET REFERRED TO NAD 1983 (Conus) United States/State Plane 1983—Ohio North 3401.
- 3. THE TOPOGRAPHIC INFORMATION DEPICTED ON THE MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATE INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITION AT THAT TIME.
- 4. THIS SURVEY WAS PREPARED IN ACCORDANCE WITH THE STANDARDS OUTLINED IN CORPS OF ENGINEERS HYDROGRAPHIC SURVEY MANUAL EM 1110-2-1003 AND CORPS OF ENGINEERS CONTROL AND TOPOGRAPHIC SURVEY MANUAL EM 1110-1-1005.
- 5. UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE AND SHOULD NOT BE RELIED ON FOR EXCAVATION WORK. CONTACT "811 CALL BEFORE YOU DIG" PRIOR TO ANY EXCAVATION WORK.
- 6. SUBMERGED SHEETPILE WALL SHOWN ALONG LAKESIDE BEACH ON EASTERLY SIDE OF OUTER CHANNEL WAS LOCATED USING STATE OF OHIO GEOGRAPHICALLY REFERENCED ORTHOPHOTOS ONLY NO SURVEY DATA COULD BE OBTAINED.





reference number Sheet 3




VICINITY MAP
(NOT TO SCALE)

LEGEND (OF SYMBOLS
⊗	BORE HOLE
	BOLLARD
	BOULDER
<u> </u>	BUSH
СВ	CATCH BASIN
9	CLEAT
*	CONIFEROUS TREE
	DECIDUOUS TREE
E	ELECTRIC BOX
+	GUY ANCHOR
Ö	HYDRANT
	LIFT GATE
X -0	LIGHT POLE
(MW)	MONITORING WELL
	PIPE INVERT
•	POST
S	SANITARY MANHOLE
	SIGN
642.6	SOUNDING
636.4	SPOT ELEVATION
S	STORM MANHOLE
	SURVEY CONTROL POINT
	TELEPHONE MANHOLE
	UTILITY POLE
	WATER VALVE
PL	PROPERTY LINE
	BOTTOM OF BANK/ DITCH
	FENCE LINE
	GRADE BREAK LINE
	GUARD RAIL
<u> </u>	MAJOR CONTOUR
	MINOR CONTOUR
E	OVERHEAD WIRE
	RAILROAD TRACK
	TOP OF BANK/DITCH

- 1. CONTOURS AND SOUNDINGS ARE U.S. SURVEY FEET REFERRED TO VERTICAL DATUM OF IGLD 1985.
- HORIZONTAL COORDINATES ARE U.S. SURVEY FEET REFERRED TO NAD 1983 (Conus) United States/State Plane 1983—Ohio North 3401.
- 3. THE TOPOGRAPHIC INFORMATION DEPICTED ON THE MAP REPRESENTS THE RESULTS OF SURVEYS MADE ON THE DATE INDICATED AND CAN ONLY BE CONSIDERED AS INDICATING THE GENERAL CONDITION AT THAT TIME.
- 4. THIS SURVEY WAS PREPARED IN ACCORDANCE WITH THE STANDARDS OUTLINED IN CORPS OF ENGINEERS HYDROGRAPHIC SURVEY MANUAL EM 1110-2-1003 AND CORPS OF ENGINEERS CONTROL AND TOPOGRAPHIC SURVEY MANUAL EM 1110-1-1005.
- 5. UNDERGROUND UTILITIES SHOWN HEREON ARE APPROXIMATE AND SHOULD NOT BE RELIED ON FOR EXCAVATION WORK. CONTACT "811 CALL BEFORE YOU DIG" PRIOR TO ANY EXCAVATION WORK.
- 6. SUBMERGED SHEETPILE WALL SHOWN ALONG LAKESIDE BEACH ON EASTERLY SIDE OF OUTER CHANNEL WAS LOCATED USING STATE OF OHIO GEOGRAPHICALLY REFERENCED ORTHOPHOTOS ONLY NO SURVEY DATA COULD BE OBTAINED.

MENTOR HARBOR
MENTOR, OHIO
TOPOGRAPHIC SURVEY

Sheet reference number Sheet 4